• 제목/요약/키워드: Mixing Head

검색결과 138건 처리시간 0.022초

사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석 (Analysis of impingement mixing for coating in injection mold)

  • 김슬우;이호상
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

탄소 섬유강화 복합소재의 고압 수지이송 성형공정에서 직선형 믹싱헤드의 성능 및 유용성 평가 (Performance and Feasibility Evaluation of Straight-Type Mixing Head in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material)

  • 한범정;정용채;황기하;강명창
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.157-165
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) technology has been commercialized for fast production of fiber reinforced composite materials. The high-pressure mixing head was one of the most core component of the HP-RTM process. In this study, a mixing head was systematically designed, manufactured and evaluated. This mixing head was composed of a nozzle, a mixing chamber, a cleaning piston part, and an internal mold release part. In actual, a straight-type structure was newly designed instead of the conventional L-type structure for improving the maximum mixing pressure and mixing ratio precision. The performance of mixing head was showed maximum mixing pressure of 15.22MPa and mixing ratio precision of 0.12%. CFRP molding experiments were successfully obtained a 6~11 laminating carbon sheet using HP-RTM presses and specimen molds.

인몰드 코팅을 위한 이액형 폴리우레탄의 혼합특성에 관한 해석적 연구 (A Study on Mixing Characteristics of Two-component Polyurethane for In-mold Coating)

  • 이호상;김동미
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.317-323
    • /
    • 2013
  • In-mold coating is a reactive fluid designed to improve the surface quality of injection molded thermoplastic substrate in functional and cosmetic properties. In this study, a mixing head for in-mold coating was designed, and mixing characteristics of two-component polyurethane flowing through runner were investigated based on flow simulations. In order to achieve uniform mixing of two components injected through straight mixing head, an impingement aftermixer was used in runner design. Semi-circular cross-section was better than circular one for runners for uniform mixing. With increasing runner length and flow rate, mixing became more uniform. In addition, the degree of mixing was more improved with decreasing viscosity of isocyanate.

인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발 (Development of two-component polyurethane metering system for in-mold coating)

  • 서봉현;이호상
    • Design & Manufacturing
    • /
    • 제10권2호
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

폴리우레탄 발포 노즐 형상이 혼합 성능에 미치는 영향 (Influences of Polyurethane Nozzle Shape on Mixing Efficiency)

  • 김도연;이태경;정해도;김형재
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.31-35
    • /
    • 2016
  • For reaction injection molding (RIM) polyurethane was mixed in the mixing head by impingement mixing, injected into the mold, and cured quickly, as soon as the mold is filled. The shape of the nozzle in the mixing head is critical to improve the quality of polyurethane. To achieve homogeneous mixing, an intensive turbulence energy in the mixing nozzle is essential. In this study, a mixing nozzle for RIM was designed, and mixing efficiency was investigated based on experiment. Experiments were conducted with different combinations of nozzle tips and exit diameter to measure the mixing efficiency by measuring jet force and investigating mixing image with high speed camera. Jet force increased gradually and reaches steady state conditions. The jet force depended on shape of nozzle tip and outlet sizes. These results suggest that optimized nozzle configurations are necessary for high efficiency mixing with RIM.

8톤급 다단연소 사이클 로켓엔진 연소기 혼합헤드 설계 (Design of Mixing Head Part of Combustion Chamber for 8tonf Class Staged Combustion Cycle Rocket Engine)

  • 김동기;하성업;문일윤;문인상
    • 항공우주시스템공학회지
    • /
    • 제9권2호
    • /
    • pp.34-40
    • /
    • 2015
  • Staged combustion cycle engines are well known to have high combustion efficiencies and specific impulse. In this study, design of mixing head part of combustion chamber for 8tonf class staged combustion cycle rocket engine (ES-08) was performed. Structural stability of the mixing head part of the combustion chamber is very important design factor because it is loaded by high temperature and high pressure of fuel and oxidizer as well as by thrust load simultaneously. Uniformity of flow distributions of the propellants to the injectors is also important factor. First, a basic configuration for the ES-08 mixing head part was designed on the basis of the structural design requirements. And then, the structural analyses were performed on the basic configuration as well as some of reinforced configurations. As the structural analyses results, the most stable configuration was selected for the ES-08 mixing head part. In order to examine the uniformity of the flow distributions of the propellants through the manifold of the mixing head, flow analysis was performed based on the selected configuration. The results of the flow analysis showed that the fuel and the oxidizer were uniformly supplied to the injector.

75톤급 연소기 헤드부의 구조안정성 평가 (Evaluation of Structural Stability for a 75-tonf Class Thrust Chamber Mixing Head)

  • 유철성;이금오;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.515-519
    • /
    • 2011
  • 75톤급 연소기 헤드부의 구조적인 안정성을 검증하고자 구조시험을 수행하였다. 연소기 헤드부는 재생냉각된 연료와 극저온 산화제에 의하여 고압의 하중을 받을 뿐만 아니라 엔진에서 발생된 추력을 전달한다. 따라서 연소기 헤드부가 소성변형 또는 구조적인 손상 없이 작동하기 위해서는 헤드부의 구조안정성이 매우 중요한 요소이다. 본 연구에서는 구조안정성 평가를 위하여 전자빔용접과 티그용접 두 가지 종류의 용접을 사용하여 헤드부를 제작하고, 구조적인 안정성을 평가하였다. 구조시험 결과 전자빔용접을 적용한 연소기 헤드부가 설계 하중조건에서 구조적인 손상 없이 안정하였으며, 티그용접 연소기 헤드부에 비하여 구조적으로 더 안정함을 보여주었다.

  • PDF

75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험 (Combustion Stability Rating Test under Low Pressure Condition of a 75-tonf-class LRE Thrust Chamber)

  • 이광진;강동혁;김문기;안규복;한영민;최환석
    • 한국추진공학회지
    • /
    • 제14권5호
    • /
    • pp.92-100
    • /
    • 2010
  • 75톤급 기술검증용 연소기의 연소안정성 시험이 저압 조건에서 수행되었다. 이 시험에 사용된 두 개의 연소기 헤드 중 하나는 631개의 분사기를 가지며, 다른 하나는 721개의 분사기를 가진다. 631개의 분사기를 갖는 연소기 헤드는 연소압력 30 bar에서 자발 불안정이 발생하였고 721개의 분사기를 갖는 연소기 헤드는 동일한 연소압력과 동일한 유량 조건에서 고주파 연소안정성이 유지됨을 보였다. 그러나 721개의 분사기를 갖는 연소기 헤드는 연소압력 20 bar에서 자발 불안정이 발생하였고 이러한 결과로부터 연소기 헤드의 형상은 안정성 경계 영역을 변화시킴을 알 수 있었다.

액체메탄엔진용 믹싱헤드 일체형 다중점화장치 (A Mixing Head Integrated, Multi-Ignition Device for Liquid Methane Engine)

  • 임병직;이준성;이기주;박재성
    • 한국추진공학회지
    • /
    • 제26권3호
    • /
    • pp.54-65
    • /
    • 2022
  • 2단형 소형위성발사체 상단 메탄엔진에 다중점화가 가능한 간결한 점화기를 개발하고 있다. 첫 번째로 적층제조 기술을 활용하여 믹싱헤드와 일체형으로 다중점화장치를 설계 및 제작하였다. 두 번째로 연소기 헤드에 공급되는 점화 추진제를 주-추진제 배관에서 분기하여 공급함으로써 점화가스 저장을 위한 별도의 고압 용기가 필요없다. 1톤급 액체산소/액체메탄 엔진 연소기 헤드에 일체형으로 고안된 신규 점화기에 대해서 점화기 단독시험, 연소기 점화시험 및 연소기 성능시험 등의 다양한 시험을 수행하였고, 안정적인 점화 성능을 확인하였다.

75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험 (Combustion Stability Rating Test under Low Pressure Condition of a 75-$ton_f$ LRE Thrust Chamber)

  • 이광진;강동혁;김문기;안규복;한영민;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.231-238
    • /
    • 2010
  • 75톤급 기술검증용 연소기의 저압 조건 연소안정성 시험이 수행되었다. 동일한 추진제 유량을 연소실에 공급하면서 분사기 수량이 감소된 연소기 헤드의 경우 연소압력 30 bar에서 자발 불안정이 발생하였으나, 분사기 수량이 증가된 연소기 헤드에서는 동일한 연소압력 조건에서 고주파 연소안정성이 유지됨을 보였다. 30 bar에서 연소안정성을 보인 연소기 헤드는 연소압력 20 bar에서 자발 불안정이 발생하여 안정성 경계 영역을 보여주었다.

  • PDF