• Title/Summary/Keyword: Mixing Angle

Search Result 311, Processing Time 0.031 seconds

Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels (디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구)

  • Park, Sewon;Park, Su Han;Park, Sungwook;Chon, Mun Soo;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.

Numerical Analysis of Heat Transfer System Using a Symmetric Flexible Vortex Generator in a Poiseuille Channel Flow (대칭 형태로 기울어진 와류 생성기를 이용한 열전달 시스템 수치 해석)

  • Kim, Jeonghyeon;Park, Sung Goon
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • Flexible structures have been adopted in heat transfer systems as vortex generators. The flexible vortex generators immersed in a flow show a self-sustained oscillatory motion, which enhances fluid mixing and heat transfer. In the present study, the vortex generators in a two-dimensional channel flow are numerically investigated, and they are symmetrically mounted on the upper and lower walls with an inclination angle. The momentum interaction and heat transfer between the flexible vortex generators and the surrounding fluid are considered by using an immersed boundary method. The inclination angle is one of the important factors in determining the flapping kinematics of the flexible vortex generators. The flapping amplitude increases as the inclination angle increases, thereby enhancing fluid mixing. The heat transfer is enhanced up to 80% comparing to the baseline channel flow.

Estimation of Secondary Flow Pressure of an Annular Injection Type Supersonic Ejector Using Fabri-Choking (패브리-초킹을 이용한 환형분사 초음속 이젝터 부유동 압력 예측)

  • Kim Sehoon;Jin Jungkun;Kwon Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.405-408
    • /
    • 2005
  • A theoretical analysis is developed for an annular injection type supersonic ejector having a second-throat downstream under the assumption that the Fabri-chocking is placed in mixing chamber. Non-mixing theory is applied to formulate secondary flow pressure in the region between inlet of the mixing chamber and Fabri-chocking. To describe the shock standing at the inlet of the mixing chamber, two dimensional oblique shock relations are used and it is assumed that the shock affects only primary flow at Fabri-chocking plane. In conclusion, it agrees well with experiments in case of small contracting angle of mixing chamber, under 4degrees.

  • PDF

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Lab-Scale Cold Model Combustor

  • Shin, D.;Park, S.;Jeon, B.;Yu, T.;Hwang, J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2284-2291
    • /
    • 2006
  • The present study investigates gas residence time and mixing characteristics for various swirl numbers generated by injection of secondary air into a lab-scale cylindrical combustor. Fine dust particles and butane gas were injected into the test chamber to study the gas residence time and mixing characteristics, respectively. The mixing characteristics were evaluated by standard deviation value of trace gas concentration at different measurement points. The measurement points were located 25 mm above the secondary air injection position. The trace gas concentration was detected by a gas analyzer. The gas residence time was estimated by measuring the temporal pressure difference across a filter media where the particles were captured. The swirl number of 20 for secondary air injection angle of 5$^{\circ}$ gave the best condition: long gas residence time and good mixing performance. Numerical calculations were also carried out to study the physical meanings of the experimental results, which showed good agreement with numerical results.

Effects of Mixing Chamber Shape on Cutting Performance in AWJ (AWJ에서 혼합챔버 형상이 절단성능에 미치는 영향)

  • Lee, Hyo-Ryeol;Kwak, Yong-Kil;Kim, Hwa-Young;Ahn, Jung-Hwan;Yeo, Myeong-Heon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.535-540
    • /
    • 2011
  • It is well known that abrasive waterjet (AWJ) was developed as a kind of high-density energy processing technologies. AWJ is used to obtain cutting quality of various materials such as metal, ceramics, glass and composite materials within a short manufacturing time because of the characteristics of heatless and noncontact processing. However, surface roughness and dimension error like round, burr, taper vary severely according to the processing conditions such as pressure, cutting speed, orifice diameter, stand off distance and abrasive flow rate. In this paper, the effect of the shape of mixing chamber on surface quality is studied. Three types of mixing chamber - round, parabolic, elliptical - are suggested and each performance is compared to that of cylindrical mixing chamber experimentally. From the result, is proved to be the optimal mixing chamber in the aspect of surface quality the parabolic one.

Color Changes in Clarified Fruit and Vegetable Juices by Mixing Ratios

  • Lee, Jun-Ho;Park, Yong-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.197-199
    • /
    • 2000
  • Clarified fruit and vegetable juices (apple, carrot and tangerine) were produced using ultrafiltration and their color change due to the mixing ratio were evaluated. clarification was carried out by passing he supernatant of extracted juice through a filter and also by using a membrane of molecular weight cut-off 10,000 Daltons to obtain the juice ultrafiltrates. The mixing ratio between apple and carrot juices was kept constant at 1:1 while increasing the amount of tangerine juice according to 10, 20, 30, 40 and 50% an stored at 4$^{\circ}C$ prior to the color measurement. Hue angle ({TEX}$h_{ab}${/TEX}) and {TEX}$L^{*}${/TEX}-value increased as the tangerine mixing ratio increased. The color difference indicated by ΔE-value also increased as the amount of tangerine increased indicating that the color of the mixed juice became pale and the changes were slight but distinctive. On the other hand, chroma ({TEX}$C^{*}${/TEX}), {TEX}$La{*}${/TEX}- and {TEX}$b^{*}${/TEX}-values decreased as the tangerine mixing ratio increased indicating that the color of the mixed juice became slightly more grayish and the samples were becoming les yellow. A simple mathematical model to predict each color characteristic is proposed.

  • PDF

Estimation of Secondary Flow Pressure of an Annular-Injection-Type Supersonic Ejector Using Fabri Choking (패브리 초킹을 이용한 환형분사 초음속 이젝터의 부유동 압력 예측)

  • Kim Sehoon;Kwon Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • A theoretical analysis is developed for an annular-injection-type supersonic ejector having a second-throat downstream the ejector under the assumption that the Fabri choking is placed in mixing chamber. Non mixing theory is applied to formulate secondary flow pressure in the region between inlet of the mixing chamber and Fabri choking. To describe the shock standing at the inlet of the mixing chamber, two dimensional oblique shock relations are used and it is assumed that the shock affects only primary flow at Fabri choking plane. Physical constraint, which is that primary flow pressure and secondary flow pressure are same at Fabri choking plane, is added. In conclusion, it agrees well with experiments in case of small contracting angle of mixing chamber, under 4degrees.

Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel (주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구)

  • 김태용;이재용;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

Effect of Vane Angle of Swirl Type Mixer on Flow Mixing and Pressure Drop in Marine Selective Catalytic Reduction Systems (선박용 SCR 시스템에서 스월형 혼합기의 날개 각도가 유동혼합 및 압력강하에 미치는 영향)

  • Park, Taewha;Sung, Yonmo;Kim, Taekyoung;Choi, Cheolyong;Kim, Duckjool;Choi, Gyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.443-448
    • /
    • 2015
  • A swirl type mixer was developed to improve the flow mixing performance of a marine selective catalytic reduction system. In this study, the swirl type mixer and a multi-staged swirl type mixer, in which the angle of the vanes at each stage is controllable were considered to provide the optimal region of angles for the mixers. The effects of the vane angles in both mixers on the uniformity index and pressure drop were investigated using a computational fluid dynamics simulation. In the swirl type mixer, the optimal conditions for the flow mixing performance were observed at vane angles from 30 to 60 degrees when vane angles could be adjusted between 10 to 80 degrees, however, the pressure drop increased continually with increasing vane angle of the mixer. On the other hand, control of the individual staged angles of the multi-staged mixer showed that it is possible to keep enhancing flow mixing performance while reducing the pressure drop.

Strength of Improved Soil on the Work-conditions of Deep Mixing Method (시공조건에 따른 심층혼합처리 개량체의 강도에 관한 연구)

  • Lee, Kwang-Yeol;Yoon, Sung-Tai;Kim, Sung-Moo;Han, Woo-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.99-104
    • /
    • 2007
  • The deep soil mixing, on ground modification technique, has been used for many diverse applications including building and bridge foundations, port and harbor foundations, retaining structures, liquefaction mitigation, temporary support of excavation and water control. This method has the basic objective of finding the most efficient and economical method for mixing cement with soil to secure settlements through improvement of stability on soft ground. In this research, the experiments were conducted on a laboratory scale with the various test conditions of mixing method; the angle of mixing wing, mixing speed. Strength and shapes of improved soil of these test conditions of deep mixing method were analysed. From the study, it was found that the mixing conditions affect remarkably to the strength and shapes of improved soils.