• Title/Summary/Keyword: Mixed sand

Search Result 450, Processing Time 0.088 seconds

Application of Concrete with Crushed Sand on Site (부순모래 콘크리트의 현장 적용성)

  • 이성복;이도헌;최진만;김병환;박창수;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.147-152
    • /
    • 1998
  • This study is to investigate the application of concrete with crushed sand on site. As a result, it is showed that the combined sand mixed with sea sand is very desirable for obtaining workability and strength of concrete, and the optimal replacement percentage of crushed sand is 50% with sea sand. After all, the crushed sand could be sufficiently used as a fine aggregate for concrete in the aspect of economical efficiency and quality, but the particle shape and microsand passing No.200 sieve should be firstly improved for increasing workability of concrete on site.

  • PDF

Efficient Optimum Design of Reinforced Concrete Structures using the Mixed-Discrete Optimization Method

  • Kim, Jong-Ok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.32-43
    • /
    • 1997
  • Abstract A series of permeability tests was performed on the mixtures with specific mixing rates of sand and bentonite using modified rigid-wall permeameter. Sand-bentonite mixtures were permeated by organics, ethanol and TCE. Permeability of bentonite with several mixing rates had a tendency to decrease up to initial one pore volume and permeability was thereafter converged to a constant value. When sand-bentonite mixtures was permeated by water, permeability was decreased at the beginning but it was thereafter converged to a constant. Among several mixing rates, permeability was greatly decreased at 15% of mixing rate. When sand-bentonite mixtures with 15% mixing rate was permeated by ethanol, permeability was about 10 times larger value than permeability of water. Peameability was shown greater values when permeated by TCE (TrichloroEthylene) followed by ethanol. Suitable mixing rate of sand-bentonite for a liner of waste landfills was detected.

An Experimental Study on the Physical Properties of Mortar Using EEZ Sand and Crushed Sand (부순모래와 EEZ모래를 혼합사용한 모르타르의 기초물성에 관한 실험적 연구)

  • Park Jong-Ho;Jang Jae-Bong;Na Chul-Sung;Cho Bong-Suk;Kim Jae-Hwan;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.33-36
    • /
    • 2005
  • Recently, Trouble of sand supply is occurred according to exhaustion of natural sand resources. therefore, various measures are proposed for solution of trouble of sand supply. also the government settled trouble of sand supply through application of EEZ sand and crushed sand. but because both EEZ sand and crushed sand are poor against general sand, they lead to lowering of quality of ready-mixed concrete. Therefore, this study evaluated physical properties of mortar using EEZ sand and crushed sand and applied evaluation result to fundamental data The result of this study have shown that quality of mortar using EEZ sand and crushed sand independently is poor against general mortar. but, mortar flow and compressive strength is increased in case of mixing 222 sand and crushed sand properly.

  • PDF

An Experimental Study on the Engineering Properties and B.P Test of Ready Mixed Concrete Using EEZ Sand and Crush Sand (부순모래와 EEZ모래를 혼합사용한 레미콘의 B.P실험 및 공학적 특성에 관한 연구)

  • Shin, Seung-Bong;Kim, Young-Sun;Kim, Young-Duck;Lee, Sung-Yon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.105-108
    • /
    • 2006
  • Recently, trouble of sand supplying is occurred according to exhaustion of natural sand resources. Therefore various measures are proposed for solution of trouble of sand supply and crushed sand among measures is used as one of most universal measures. But because crushed sand have poor particle shape and plenty of mikes micro particle, the quality of concrete using crushed sand deteriorated. Therefore, this study evaluated engineering property of concrete with replacement ratio of crushed sand and EEZ sand applied evaluation result to fundamental data for quality control of concrete using crushed sand and EEZ sand and The result of this study have shown that quality of concrete using crushed sand and EEZ sand and The compressive strengh of concrete up to 50, 70% EEZ sand replacement by crush sand, nearly equal to that of general sand.

  • PDF

Permeability Characteristics of Cement Mixtures with Powdered Sludge of Basalt in Jeju Island (제주도 현무암 석분슬러지를 포함한 시멘트 혼합체의 투수특성)

  • Lee, Yang-Gyu;Yun, Jung-Mann;Song, Young-Suk;Kim, Ki-Young;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.159-165
    • /
    • 2015
  • In this study, the coefficient of permeability for cement mixtures including the powdered sludge of basalt, sand or fly ash with different mixed ratios was measured in order to reuse the powdered sludge of basalt in Jeju Island as the cut off materials. As the permeability test results, the coefficient of permeability for the cement mixtures with fly ash was increased with increasing the fly ash contents. The amount of fly ash in the cement mixtures should be mixed with less than 8 %. Meanwhile, the coefficient of permeability for the cement mixtures with sand was increased with increasing the sand contents. The amount of sand in the cement mixtures should be mixed with less than 40 %. According to the comparison result of cement mixtures including fly ash or sand, it is more advantageous to put the sand into the cement mixtures, rather than mixing the fly ash.

Development of Numerical Model for Mixed Soil Problems Using Dry Bulk Density and Investigation of Its Numerical Stability (건조체적밀도를 적용한 혼합토사 수치모델의 개발과 수치적 안정성 평가)

  • Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.110-121
    • /
    • 2021
  • The importance of tidal flats lost due to industrialization has recently received attention, and attention is being paid to the creation of artificial tidal flats and maintenance of natural tidal flats. However, there is still a lack of understanding about the behavioral characteristics of mud, mud, and sand that form tidal flats. Although research on the movement characteristics of mixed soils such as tidal flats has been conducted through field investigations and hydraulic experiments, interest in developing a numerical model based on these results has not yet reached. In this paper, the purpose of this paper is to establish a mixed soil model that can efficiently manage the low quality of the tidal flats. In constructing a model for reproducing the surface movement of mixed soil, the numerical stability of the reproduction and movement of sand and mud constituting the mixed soil in the numerical model should be considered first, so first, the volume of sand and mud constituting the mixed soil A mixed soil model representing the relationship was proposed based on a topographical diagram representing the geometric structure of the mixed soil. In order to consider the dry bulk density of the mixed soil, it was possible to consider the dry bulk density of the mud by introducing the water content of the mud containing water. In addition, it was confirmed that the mud and sand movement calculation according to the slope collapse of the mixed soil was stably performed through the calculation of the slope collapse of the mixed soil through the numerical analysis model to which the proposed mixed soil model was applied.

Comparison of rheological properties containing natural and crushed sands in self-compacting concretes (잔골재 종류에 따른 고유동 콘크리트의 유동 특성)

  • Lee, Keun-Su;Choi, Yeol;Jung, Woong;Lee, Jae-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.365-368
    • /
    • 2008
  • In recent, the crushed sand as a fine aggregate has increasingly used for concrete industry due to the shortage of natural sand from river and the growing demand for protection of natural environments. Aggregates may have a significant influence on the properties of self-compacting concrete (SCC) including self-compacting mortar (SCM). The rheological properties of SCC and SCM using crushed sand as a fine aggregate has been compared to that of SCC and SCM using natural sand and mixed sand of both. Test results indicate that the yield stress of SCM containing 50% of mixed sand present higher than those prepared with natural sand and crushed sand according to SP content. the slump values of SCC with natural sand have approximately 5-15% higher than those of SCC with crushed sand. Also the L-box test values ($H_2/H_1$) of SCC with natural sand have approximately 20-30 higher than those of SCC with crushed sand under same water/cement ratio and viscosity enhancing admixture.

  • PDF

A Study on the sand mold compression strength of the N-process mold mixed with JA-EUN-DO sand. (자은도사(慈恩島砂)를 이용(利用)한 N-Process의 주형강도(鑄型强度)에 관(關)한 연구(硏究))

  • Lee, Won-Sik
    • Journal of Korea Foundry Society
    • /
    • v.4 no.2
    • /
    • pp.102-107
    • /
    • 1984
  • The variations of the mold compression strength were studied by varing the contents of the silicon powder and water glass, silion purities, and molecule rates of the water glass, when domestic JA EUN DO sand is mixed with water glass (sodium silicate) and metallic silicon or ferro - silicon powder by the self - hardening N - PROCESS method. The results obtained from this experiment are as follows; 1) The compression strength of the mold used with metalic powder was higher and more stable than to be used ferro - silicon powder. 2) 6% water glass of 2.8 molecule rate and 1.5% of ferro - silicon of 75% purity for the N - PROCESS used with JA EUN DO sand was suitable mixing rate. 3) The compression strength increased with self - hardening time, and the PH values of the mixture of silicon powder and water glass did not change after 2 hours, but the compression strength increased steadily due to the reaction of remained silicon. 4) It is recommended to take 24 hours for self - hardening time at least.

  • PDF

Geotechnical Engineering Characteristics of Mixed Soil Containing Stone Sludge (석분혼합토의 지반공학적 특성)

  • Kim, Chan-Kee;Kim, Joong-Chul;Park, Wook-Geun;Kim, Eui-Jo;Kim, Yong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1378-1382
    • /
    • 2009
  • This study is conducted to investigate the possibility of the utilization of the mixed soil formed by mixing stone sludge, bentonite, and residual soil as a soil sealant sustaining both stability and capacity in the barrier system. And the mixed soil formed by mixing stone sludge, river sand is conducted to investigate the possibility of recycle. A series of tests were performed on the mixed soil(stone sludge, bentonite, Cement and residual soil) to evaluate basic properties such as compaction, compressive strength, permeability of these materials. and the stone sludge-river sand mixed soil were performed the discharge capacity tests.

  • PDF

Fundamental Properties of Mortar and Concrete Using Waste foundry Sand

  • Moon Han-Young;Choi Yun-Wang;Song Yong-Kyu;Jeon Jung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.141-147
    • /
    • 2005
  • The development of automobile, vessel, rail road, and machine industry leads an increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 700,000 tons a year, but most WFS has been buried itself and only $5{\~}6\%$ WFS is recycled as construction materials. Therefore, it is necessary for most WFS to research other ways which can be used in a higher value added product. The study on recycling it as a fine aggregate for concrete or green sand has been in progress in America and Japan since 1970s and 1980s respaectively. In this study, two types of WFS were used as a fine aggregate for concrete. Nine types of concrete aimed at the specified strength of 30 MPa were mixed with washed seashore coarse sand in which salt was removed, and WFS and then appropriate mixture proportion of concrete was determined. Moreover, basic properties such as air contents, setting time, bleeding, workability and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.