• Title/Summary/Keyword: Mixed rubber solution

Search Result 14, Processing Time 0.017 seconds

Building Calibration Curve for Py-GC/MS Analysis of SBR/BR Blend Rubber Compounds

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2020
  • A calibration curve is needed to determine the SBR and BR blend ratio of SBR/BR blend rubber compounds using pyrolysis-gas chromatography/mass chromatography (Py-GC/MS) or Py-GC. In general, a calibration curve is obtained using reference SBR/BR vulcanizates with various blend ratios. In this study, the calibration curves were obtained using reference samples made of rubber solutions and were compared to those plotted using the reference SBR/BR vulcanizates. Calibration curves using variations of 1,3-butadiene/styrene, 4-vinylcyclohexene (VCH)/styrene, 2-phenylpropene (PhP)/butadiene, PhP/VCH, 4-phenylcyclohexene (PhCH)/butadiene, and PhCH/VCH ratios with the BR content were examined for the suitability. We found that the calibration curves obtained using the mixed rubber solution references (1,3-butadiene/styrene and PhP/butadiene) could replace those constructed using the reference SBR/BR vulcanizates. The calibration curves of 1,3-butadiene/styrene and PhP/butadiene obtained using the raw references can be used for the determination of the SBR/BR blend ratios by applying some correction factors.

Finite Element Analysis for Cracks in Rubber Bonded to a Rigid Material (강체와 접합된 고무의 균열에 대한 유한요소해석)

  • 김창식;임세영
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.111-120
    • /
    • 1994
  • Cracks in rubber bonded to a rigid material such as steel are analyzed with the aid of a mixed finite element technique. Firstly the weak form is derived for finite element analysis of an incompressible material, and the Mooney-Rivlin form is assumed for the constitutive modeling of rubber. The numerical results from finite element analysis is examined to confirm the accuracy and convergence of solution by way of comparison to other numerical results. The interpretation of the J-integral for large elastic deformation as the energy release rate is confirmed, and the J-integral is calculated for varing crack length. The crack growth stability is discussed using the result of finite element analysis.

  • PDF

Effect of 1,3-Diphenyl-guanidine (DPG) Mixing Step on the Properties of SSBR-silica Compounds

  • Lim, Seok-Hwan;Lee, Sangdae;Lee, Noori;Ahn, Byeong Kyu;Park, Nam;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.81-92
    • /
    • 2016
  • 1,3-Diphenylguanidine (DPG) is commonly used as a secondary accelerator which not only acts as booster of cure but also activating silanization reaction. The aim of this study is to increase the interaction between silica and rubber by using DPG. In this study, mixing was proceeded in two steps. The T-1 compound is mixed DPG with silica and silane coupling agent in the kneader at high temperature which is named as $1^{st}$ mixing step. T-3 compound is mixed DPG with curatives in the two-roll mill at low temperature which is named as $2^{nd}$ mixing step. The T-2 compound is mixed a half of DPG in $1^{st}$ mixing step and the remainder is mixed in $2^{nd}$ mixing step. Total DPG content was equal for all compounds. When DPG is mixed with silica, silane coupling agent during the $1^{st}$ mixing step, a decrease in cure rate and an increase in scorch time can be seen. This indicates that DPG is adsorbed on the surface of silica. during rubber processing. However, bound rubber content is increased and dynamic properties are improved. These results are due to the highly accelerated silanization reaction. However, there are no significant difference in 100%, 300% modulus.

Improving Light Stability of Natural Rubber Latex Foam

  • Shim, Chang Su;Oh, Jeong Seok;Hong, Chang Kook
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • In this study, natural rubber latex foam was prepared in order to replace commercialized polyurethane foams as a car seat material. Physical properties of the latex foam were investigated and the light stability was improved. The latex foam was mixed in an aqueous solution state, and the degree of foaming and the accelerator ratios were appropriately controlled. Tensile properties, hysteresis and dynamic mechanical properties of the latex foam were measured to compare with those of polyurethane foams. UV light absorbers and radical scavengers were added for improving light stability of the latex foam. Xenon lamp test was conducted to investigate the effects of the reagents on light stability. Our results revealed that the prepared latex foam including a light absorber with an antioxidant showed excellent light stable performances.

Performance Test of Silicone Rubber Membrane by Gas Permeation Method (기체투과에 의한 Silicone Rubber Membrane의 기능성 시험)

  • Lee, Seung-Bum;Hong, In-Kwan
    • Elastomers and Composites
    • /
    • v.33 no.1
    • /
    • pp.37-43
    • /
    • 1998
  • The permeation of gas through polymer membrane at temperatures above its glass transition, generally occurs by a solution-diffusion mechanism. This mechanism is performed by the affinity difference between polymeric materials and gas molecules, and various technologies, such as copolymerization, impregnation and so on, have been researched to improve the affinity of polymeric material for the gases. In this study, permeability and selectivity for some gases were obtained from steady-state rates of gas permeation through silicone rubber membrane which is prepared by supercritical fluid extraction method. The permeability was measured by the volumetric method proposed by Barrer. Permeability was increased generally with temperature and permeation pressure. Silicone rubber membrane shows a higher permeability to $CO_2$ than to $O_2$, $N_2$. This results probably reflect the relatively high solubility of CO_2 in silicone rubber membrane, which is due to the affinity of $CO_2$ molecules. Since separation powers of $CO_2/N_2$, $CO_2/O_2$ were more than 200, and 100, respectively, it is able to separate $CO_2$ from the air, and the optimum temperature and pres-sure was 328.15 K, 60 cmHg respectively. In future, it is possible that the silicone rubber membrane can be used for separation or concentration of $CO_2$ through experiment for mixed gas separation.

  • PDF

A Study on the Moisture-Cure of Halogenated Rubber(II) (Moisture-Cure of CIIR and BIIR) (할로겐화 고무의 수가교에 관한 연구(II) (할로겐화 부틸고무의 수가교))

  • Yoon, Jeong-Sik;Yoo, Chong-Sun;Paik, Nam-Chul;Min, Byung-Kwon
    • Elastomers and Composites
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 1992
  • Reactions between chlorinated or brominated poly(isobutylene-isoprene) (CIIR and BIIR, respectively) and 3-mercaptopropyltrimethoxysilane(MPS) were kinetically studied by gas chromatography in solution state. CIIR and BIIR were mixed with MPS and dibutyltin dilaurate as catalyst on roll mill and then the compounds were cured in hot water or atmosphere. From the gas chromatography, reaction order, activation energy, and frequency factor were determined. Crosslinking density and physical properties of moisture-cured CIIR and BIIR were measured. CIIR and BIIR were effectively moisture-cured and physical properties of these rubbers were comparatively good.

  • PDF

Development of Rubber Chemicals Automatic Mixed System for Toxic Chemical Block (유해화학물질 차단을 위한 고무약품 배합자동화장치 개발)

  • Kim J.Y.;Song K.S.;Chol C.J.;Kwak N.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.305-306
    • /
    • 2006
  • In process for production of Rubber Scheme Product that have the most inferior Working Environment is Medicine mixture and Scheme processing. Applying automation and Environment Treatment technology to the hazardous chemical and mixture processing, Through developed 'Mixture Automatic Machine for hazardous chemical Interruption type that is occurred at mixing rubber medicines', we try to decline worker's intensity of labour, Also overcomes solution of work evasion phenomenon and manpower supply and demand's difficulty by forming agreeable working environment and through the automatic scheme and mixture processing by preventing that hazardous chemical had known as disease causes of various importance disease is exposed to worker during the work. and we plan to do so that production of high added value product may be available.

  • PDF

The Effects of Diluted Fibrin Glue about Continuous Air Leakage after Lung Surgery (폐수술 후 지속적 공기누출에 희석한 Fibrin Glue의 효과)

  • Choi Chang-Woo;Lee Seong-Jin;Lee Chol-Sae;Lee Kihl-Rho;Lee Seock-Yeol
    • Journal of Chest Surgery
    • /
    • v.39 no.10 s.267
    • /
    • pp.770-774
    • /
    • 2006
  • Background: Continuous air leakage through chest tube after lung surgery may increase pt's hospital stay and lead to many complications including empyema etc. Chemical pleurodesis has frequently been used for prevention of air leakage. Therefore, we performed chemical pleurodesis using diluted fibrin glue in patients with continuous air leak-age and observed the effects and efficiency of treatment. Material and Method: From September, 2001 to August, 2005, 16 patients whose continuous air leakage lasted more than 7 days underwent chemical pleurodesis with diluted fibrin glue. The effects of treatment, complications and recurrences were reviewed. Dissolved fibrinogen 1.0 g and aprotinin 500,000 KIU were mixed in a 50 cc syringe (Mixed solution A). And dissolved thrombin 5,000 IU and Calcium chloride 600 mg were mixed in a 50 cc syringe (Mixed solution B). Cefazolin 1.0 g was mixed in a 50 cc syringe (Mixed solution C). Rubber tube was inserted between the chest tube and the collecting bottle. An inserted rubber tube was positioned 60cm above the patient and forming a loop appearance was done. Mixed solutions A, B and C were injected into the highest rubber tube. Results: Continuous air leakages disappeared in all f6 patients at next day. Chest tubes were removed after 3 days in all patients. Complications were chest pain in 12 patients (75%), leukocytosis in 14 patients (88%), fever and chill in 14 patients (88%). All complications were transient and disappeared without specific treatment. Conclusion: Our findings demonstrated that diluted fibrin glue chemical pleurodesis was effective in patients with continuous air leakage lasting more than 7 days. Diluted fibrin glue chemical pleurodesis had good results with acceptable complications. long term follow-up is necessary to evaluate the accurate effects of treatment and recurrence in a large number of patients.

Mixed Bacillus sp. BOD sensor (혼합 Bacillus sp. BOD 센서)

  • Kang, Tae Young;Park, Hyun Joo;Park, Kyeong Ryang;Kim, Jin Doo;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The BOD (biochemical oxygen demand) sensor was fabricated by covering a dissolved oxygen (DO) probe with a microbe-impregnated membrane and a dialysis membrane. Various microorganisms isolated from the soils, water and activated sludge have been evaluated for measuring biochemical oxygen demand (BOD); Bacillus species HN24 and HN93 were selected as they exhibited rapid oxygen consumption and fast recovery. Improved BOD sensor could be prepared by using mixed microbes (Bacillus subtilis, Bacillus sp. HN24 and Bacillus sp. NH93) and silicon rubber gas-permeable membrane for DO probe, and by bubbling 50% $O_2$ ($N_2$ valence) through background buffer solution. This system exhibited excellent analytical performance resulting in good linearity ($r^2=0.9986$) from 0 to 100 mg/L level of BOD.

Study on Mixing Condition of the Rubber Composite Containing Functionalized S-SBR, Silica and Silane : I. Effect of Mixing Temperature (변성 S-SBR Silica-Silane 고무복합체의 배합조건에 대한 연구 : I. 배합온도의 영향)

  • Jang, Suk-Hee;Kim, Wook-Soo;Kang, Yong-Gu;Han, Min-Hyun;Chang, Sang-Mok
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.94-102
    • /
    • 2013
  • Characteristics of rubber mixture were evaluated in order to find the optimum mixing conditions of compounds containing silica and silane at various temperatures. With different mixing temperatures of 105, 120, 130, 140 and $160^{\circ}C$, the viscosity of the compound mixed at $105^{\circ}C$ showed a very high viscosity value. Compounds mixed the temperature range from at $120^{\circ}C$ to $140^{\circ}C$ showed lower viscosity than the compound mixed at $105^{\circ}C$. However, the difference was found to be small in those temperature ranges. On the contrary, at the mixing temperature of $160^{\circ}C$, the viscosity of compound increased again. Through the physical and dynamic observations, it was verified that at the mixing temperature below $120^{\circ}C$ only insufficient silica-silane reaction has been obtained. In addition, with the elevated mixing temperature of $160^{\circ}C$, Cross-linking occurred during mixing by the sulfur contained in coupling agent. In the temperature ranges from $120^{\circ}C$ to $140^{\circ}C$, because of the fast coupling reaction at higher temperature, it was thought to be more advantageous during reaction even though the trend of viscosity and dynamic mechanical property was not clear.