• Title/Summary/Keyword: Mixed neutrons and ${\gamma}$-rays

Search Result 4, Processing Time 0.021 seconds

A technique for the reduction of pulse pile-up effect in pulse-shape discrimination of organic scintillation detectors

  • Nakhostin, M.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.360-365
    • /
    • 2020
  • A technique for the reduction of pulse pile-up effect in digital pulse-shape discrimination (PSD) of neutrons and gamma-rays with organic scintillation detectors is presented. The technique is based on an electronic reduction of the effective decay-time constant of scintillation pulses while retaining the PSD information of the pulses. The experimental results obtained with a NE213 liquid scintillation detector in a mixed radiation field of neutrons and gamma-rays are presented, demonstrating a figure of merit (FOM) of 1.20 ± 0.05 with an energy threshold of 350 keVee (electron equivalent energy) when the effective length of the pulses is reduced to 50 ns.

Radiation Measurement of a Operational CANDU Reactor Fuel Handling Machine using Semiconductor Sensors (ICCAS 2003)

  • Lee, Nam-Ho;Kim, Seung-Ho;Kim, Yang-Mo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1220-1224
    • /
    • 2003
  • In this paper, we measured the radiation dose of a fuel handling machine of the CANDU type Wolsong nuclear reactor directly during operation, in spite of the high radiation level. In this paper we will describe the sensor development, measurement techniques, and results of our study. For this study, we used specially developed semiconductor sensors and matching dosimetry techniques for the mixed radiation field. MOSFET dosimeters with a thin oxide, that are tuned to a high dose, were used to measure the ionizing radiation dose. Silicon diode dosimeters with an optimum area to thickness ratio were used for the radiation damage measurements. The sensors are able to distinguish neutrons from gamma/X-rays. To measure the radiation dose, electronic sensor modules were installed on two locations of the fuel handling machine. The measurements were performed throughout one reactor maintenance cycle. The resultant annual cumulative dose of gamma/X-rays on the two spots of the fuel handling machine were 18.47 Mrad and 76.50 Mrad, and those of the neutrons were 17.51 krad and 60.67 krad. The measured radiation level is high enough to degrade certain cable insulation materials that may result in electrical insulation failure.

  • PDF

Study on the design and experimental verification of multilayer radiation shield against mixed neutrons and γ-rays

  • Hu, Guang;Hu, Huasi;Yang, Quanzhan;Yu, Bo;Sun, Weiqiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.178-184
    • /
    • 2020
  • The traditional methods for radiation shield design always only focus on either the structure or the components of the shields rather than both of them at the same time, which largely affects the shielding performance of the facilities, so in this paper, a novel method for designing the structure and components of shields simultaneously is put forward to enhance the shielding ability. The method is developed by using the genetic algorithm (GA) and the MCNP software. In the research, six types of shielding materials with different combinations of elements such as polyethylene (PE), lead (Pb) and Boron compounds are applied to the radiation shield design, and the performance of each material is analyzed and compared. Then two typical materials are selected based on the experiment result of the six samples, which are later verified by the Compact Accelerator Neutron Source (CANS) facility. By using this method, the optimal result can be reached rapidly, and since the design progress is semi-automatic for most procedures are completed by computer, the method saves time and improves accuracy.

Neutron Spectrum Measurement in $n/{\gamma}$ Mixed Field(1) ($n/{\gamma}$ 복합 방사선장에서의 중성자 스펙트럼 분리 측정연구(1))

  • Lee, Kwang-Pill;Kim, Wuon-Shik
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.501-508
    • /
    • 1993
  • In n/${\gamma}$ mixed field of $^{241}Am-Be$(${\alpha}$, n) neutron source, we seperated the neutron component from gamma ray component. At the center of the detector, $^6Li$ was doped on the cerium activated glass plate for $^6Li$(${\alpha}$, n)T nuclear reaction. The time differences of the light following excitations by different scintillators, BC501($C_8H_{10}$) and cerium, and by the same scintillator for different radiations as neutrons and gamma-rays are used to apply the methods of PSD(Pulse Shape Discriminator) and CFD(Constant Fraction Discriminator). The figure of merit of $^6Li$ fast neutron spectrometer is estimated as 1.36.

  • PDF