• Title/Summary/Keyword: Mixed metal oxide

Search Result 134, Processing Time 0.025 seconds

Electrochemical Performance of a Metal-supported Solid Oxide Electrolysis Cell

  • Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.121-125
    • /
    • 2019
  • A YSZ electrolyte based ceramic supported Solid Oxide Cell (SOC) and a metal interconnect supported SOC was investigated under both fuel cell and co-electrolysis (steam and $CO_2$) mode at $800^{\circ}C$. The single cell performance was analyzed by impedance spectra and product gas composition with gas chromatography(GC). The long-term performance in the co-electrolysis mode under a current density of $800mA/cm^2$ was obtained using steam and carbon dioxide ($CO_2$) mixed gas condition.

Preparation of CuO-CeO2 mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO (졸-겔법에 의한 CuO-CeO2 복합 산화물 촉매의 제조 및 CO의 선택적 산화반응에 응용)

  • Hwang, Jae-Young;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.883-891
    • /
    • 2017
  • For the preferential oxidation of CO contained in the fuel of polymer electrolyte membrane fuel cell (PEMFC), CuO-$CeO_2$ mixed oxide catalysts were prepared by the sol-gel and co-precipitation methods to replace noble metal catalysts. In the catalyst preparation by the sol-gel method, Cu/Ce ratio and hydrolysis ratio were changed. The catalytic activity of the prepared catalysts was compared with the catalytic activity of the noble metal catalyst($Pt/{\gamma}-Al_2O_3$). Among the catalysts prepared with different Cu/Ce ratios, the catalyst whose Cu/Ce ratio was 4:16 showed the highest CO conversion (90%) and selectivity (60%) at $150^{\circ}C$. As the hydrolysis ratio was increased in the catalyst preparation, surface area increased, and catalytic activity also increased. The highest CO conversions with the CuO-$CeO_2$ mixed oxide catalyst prepared by the co-precipitation method and the noble metal catalyst (1wt% $Pt/{\gamma}-Al_2O_3$) were 82 and 81% at $150^{\circ}C$, respectively, whereas the highest CO conversion with the CuO-$CeO_2$ mixed oxide catalyst prepared by the sol-gel method was 90% at the same temperature. This indicates that the catalyst prepared by the sol-gel method shows higher catalytic activity than the catalysts prepared by the co-precipitation method and the noble metal catalyst. From the CO-TPD experiment, it was found that the catalyst having CO desorption peak at a lower temperature ($140^{\circ}C$) revealed higher catalytic activity.

Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis

  • Dutilleul, Marion Collart;Seisenbaeva, Gulaim A.;Kessler, Vadim G.
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.77-88
    • /
    • 2014
  • Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of $Cu_2O$, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of $Cu(acac)_2$ and $Ni(acac)_2$ produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions in this case.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

A preparation of dysprosium monotitanate powder by mixed-oxide ceramics processing employing polymer carrier (Polymer carrier 효과에 의하여 단순화된 새로운 세라믹분말 제조방법)

  • 이상진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.350-355
    • /
    • 1998
  • Dysprosium monotitanate $(Dy_2TiO_5)$ powder was synthesized by a simple mixed-oxide ceramics process using ethylene glycol (EG). Ethylene glycol, as the organic carrier for the metal cations, was used for polymerization mechanism. The successful used of a non-chelating polymer for the mixed-oxide ceramic process indicated that cation chelation is not the only route for creating stable ceramic precursors. Characterization of the powders by various thermal analysis, microscopy, and diffraction methods has been carried out.

  • PDF

Synthesis of Propylene Glycol via Hydrogenolysis of Glycerol over Mixed Metal Oxide Catalysts (혼합 금속산화물 촉매에서 글리세롤의 수소화 분해반응을 통한 프로필렌 글리콜의 합성)

  • Kim, Dong Won;Moon, Myung Joon;Ryu, Young Bok;Lee, Man Sig;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • Hydrogenolysis of glycerol to propylene glycol was performed over binary and ternary metal oxide catalysts. The conversion of glycerol and selectivity to propylene glycol were increased on Cu/Zn and Cu/Cr mixed oxides compared to pure CuO and ZnO oxides. The addition of alumina into Cu/Zn mixed oxide very highly increased the conversion of glycerol and selectivity to propylene glycol. The conversion of glycerol was increased with increasing the reaction temperature but the selectivity to propylene glycol was shown to have maximum value at $200^{\circ}C$ and then decreased at $250^{\circ}C$. The conversion of glycerol and selectivity to propylene glycol were decreased with increasing the glycerol concentration.

Enhanced Adhesion of Cu Film on the Aluminum Oxide by Applying an Ion-beam-mixd Al Seed Layar

  • Kim, Hyeong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.229-229
    • /
    • 2012
  • Adhesion of Copper film on the aluminum oxide layer formed by anodizing an aluminum plate was enhanced by applying ion beam mixing method. Forming an conductive metal layer on the insulating oxide surface without using adhesive epoxy bonds provide metal-PCB(Printed Circuit Board) better thermal conductivities, which are crucial for high power electric device working condition. IBM (Ion beam mixing) process consists of 3 steps; a preliminary deposition of an film, ion beam bombardment, and additional deposition of film with a proper thickness for the application. For the deposition of the films, e-beam evaporation method was used and 70 KeV N-ions were applied for the ion beam bombardment in this work. Adhesions of the interfaces measured by the adhesive tape test and the pull-off test showed an enhancement with the aid of IBM and the adhesion of the ion-beam-mixed films were commercially acceptable. The mixing feature of the atoms near the interface was studied by scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy.

  • PDF

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • Most of LNT catalysts use noble metals such as Pt for low temperature NOx oxidation but there is an economic weakness. For the purpose of overcoming this, this study is to develop DeNOx catalyst for LNT excluding PGM (platinum group metal) such as Pt, Pd, Rh, etc. To do so, Al/Co/Ni catalyst selected as a preliminary test is used to study fundamental property and NOx’s conversion according to calcined temperature. Ultimately, that is, Al/Co/Ni mixed metal oxide which does not use PGM is selected and physicochemical characterization is performed by way of XRD, EDS, SEM, BET and ramp test and NOx conversion is also analyzed. This study shows that all samples consist of mixed oxides of spinel structure of Co2AlO4 and NiAl2O4 and have enough pore volume and size for redox. But as a result of NH3-TPD test, it is desired that calcined temperature needs to be maintained at 700 ℃ or lower. Also only samples which are processed under 500 ℃ satisfied NO and NOx conversion simultaneously through ramp test. Based on this study’s results, optimum calcined temperature for Al/Co/Ni=1.0/2.5/0.3 mixed metal oxide catalyst is 500 ℃.

A Study on Improvement of Metal-Ceramic Bonding Strength by Addition of Aluminum to Casting Metal Alloy (도재주조용 합금에 있어서 알루미륨 첨가에 따른 metal-ceramic과의 결합력 증진에 관한 연구)

  • Lee, Jae-Won;Min, Byong-Kuk;Han, Min-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2002
  • The Purpose of this study was to investigate the chemically improvement of metal-ceramics bond strength in the course of recasting Ni-Cr metal composite system with 10wt.%, 20wt.% and 30wt.% aluminum respectively. We have tested the bond strength, micro-structure, chemical composition of each metal composites and metal- ceramic bond interfaces by 3-point bending strength tester, SEM and EDS. We have made the conclusions through this study as follow: 1. The most suitable amount of aluminum to the Ni-Cr metal composite recasting is 20wt. % for improving metal-ceramics bond strength with debonding strength value of 49.54 kgf/mm2. 2. The aluminum must be changed to small spread alumina like phases and second aluminum-metal composites phases in the morphology of Ni-Cr metal composite system by adding during it's casting. These second phases have inclined functional oxide phases mixed with metal elements and they must take roll to improvement of metal-ceramics bond strength. 3. In the case of 30wt.% aluminum appended to Ni-Cr metal composite system, an excess of second inclined functional oxide phases produce cracks and spalling of them apart from it's base material. It must be a important factor of reduction of metal-ceramics bond strength.

  • PDF

Tailoring Molecular Precursors for Multicomponent Oxides

  • Hubert-Pfalzgraf, Liliane G.
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.370-379
    • /
    • 2000
  • Simple ways to build up mixed-metal molecules which can act as potential single-source precursors to multimetallic oxides are reviewed. Emphasis is given to Lewis acid-base reactions between metal alkoxides M(OR)/sub n/, and between metal alkoxides and more accessible oxide precursors, carboxylates M(O₂CR)/sub n/ and β-diketonates M(β-dik)/sub n/. Characterization of the precursors is achieved in the solid state (single crystal X-ray diffraction, FT-IR) and by multinuclear NMR in solution. The reactions proceed toward the formation of aggregates in which the different metals display their usual coordinations numbers, often six for transition metals, as shown. Strategies for fixing the stoichiometry between the metals are developed. The reactivity of the MM species (dissociation, effects of chemical modifiers, of other metallic species, hydrolytic or non-hydrolytic condensation, etc.) will be indicated. Transformations into oxides are illustrated on precursors for titanates or niobates.

  • PDF