• Title/Summary/Keyword: Mixed load

Search Result 465, Processing Time 0.033 seconds

Estimated glycemic load (eGL) of mixed meals and its associations with cardiometabolic risk factors among Korean adults: data from the 2013~2016 Korea National Health and Nutrition Examination Survey (GL 예측모델 (estimated Glycemic Load, eGL)을 활용한 한국 성인의 식사 평가 및 대사질환 지표와의 연관성 연구 : 2013~2016년 국민건강영양조사 자료를 활용하여)

  • Ha, Kyungho;Nam, Kisun;Song, YoonJu
    • Journal of Nutrition and Health
    • /
    • v.52 no.4
    • /
    • pp.354-368
    • /
    • 2019
  • Purpose: This study evaluated the glycemic response of diets using estimated glycemic load (eGL), which had been developed for mixed meals for Korean adults, and examined its associations with cardiometabolic risk factors among Korean adults. Methods: A total of 4,655 men and 6,760 women aged 19 years and above were included from the 2013 ~ 2016 Korea National Health and Nutrition Examination Survey. eGL was calculated by each meal (breakfast, lunch, dinner, and snack) and then summed to give daily total eGL. A multiple logistic regression analysis was used to examine the association. Results: Mean daily total eGL was 112.6 in men and 99.3 in women. Daily total eGL was positively associated with carbohydrate and fiber intakes, but negatively associated with protein and fat intakes in both men and women (p < 0.05 for all). Daily total eGL showed an inverse association with HDL-cholesterol level in both men and women (p = 0.0036 for men and p = 0.0008 for women). Men in the highest quintile of daily total eGL showed a 66% increased risk of hypercholesterolemia (OR, 1.66; 95% CI, 1.10 ~ 2.50; p for trend = 0.0447) compared with those in the lowest quintile. Conclusion: These findings suggest that eGL based on carbohydrate, protein, fat and fiber intakes can reflect glycemic response and therefore can be used as an index for dietary planning, nutrition education and in the food industry.

Wear Analysis of Journal Bearings in a Misaligned Shaft During Motoring Start-up and Coast-down Cycles - Part I: Study on the Change in Oil Film Thickness at Potential Wear Regions (모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널 베어링의 마모 해석 - Part I: 마모발생 가능영역에서의 유막 변화 연구)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.153-167
    • /
    • 2017
  • The aim of this study is to find the change in trend in the eccentricities of two journal bearings supporting the crankshaft of a single cylinder engine and the degree of misalignment of the shaft. We analyze the change in oil film thickness considering the wear scar under mixed-elasto-hydrodynamic lubrication regime at potential wear regions. For this, we first calculate the central eccentricities of the two journal bearings by using the mobility method. Then we calculate the outer end eccentricity by using the geometry of the bearings. Further, the tilting angle and degree of misalignment of the shaft are calculated by using the eccentricities of the two bearings. We show that the eccentricity of bearing #1, on which higher load is applied, increases at the beginning of the start-up cycle and during the coast-down cycle. However, the eccentricity of bearing #2, on which lower load is applied, decreases at the beginning of the start-up cycle and increases during the coast-down cycle. From the results of the analysis of oil film thickness, we show that the mixed-elasto-hydrodynamic lubrication regime for a misaligned shaft is at the initial stages of the start-up cycle for both bearing #1 and #2 and at the final stage of the coast-down cycle for only bearing #1.

Robust power control design for a small pressurized water reactor using an H infinity mixed sensitivity method

  • Yan, Xu;Wang, Pengfei;Qing, Junyan;Wu, Shifa;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1443-1451
    • /
    • 2020
  • The objective of this study is to design a robust power control system for a small pressurized water reactor (PWR) to achieve stable power operations under conditions of external disturbances and internal model uncertainties. For this purpose, the multiple-input multiple-output transfer function models of the reactor core at five power levels are derived from point reactor kinetics equations and the Mann's thermodynamic model. Using the transfer function models, five local reactor power controllers are designed using an H infinity (H) mixed sensitivity method to minimize the core power disturbance under various uncertainties at the five power levels, respectively. Then a multimodel approach with triangular membership functions is employed to integrate the five local controllers into a multimodel robust control system that is applicable for the entire power range. The performance of the robust power system is assessed against 10% of full power (FP) step load increase transients with coolant inlet temperature disturbances at different power levels and large-scope, rapid ramp load change transient. The simulation results show that the robust control system could maintain satisfactory control performance and good robustness of the reactor under external disturbances and internal model uncertainties, demonstrating the effective of the robust power control design.

Studies on Development of Fuel Substitute for Diesel Engine with Seed Oil of Evodia Daniellii (쉬나무 종실유의 디젤기관 대체연료 개발에 관한 연구 - Engine 성능 및 견인력을 중심으로 -)

  • Choi, Kyu-Hong;Hong, Sung-Gak;Lee, Yeo-Ha;Lee, Seung-Kee;Shin, Seung-Geuk
    • Journal of Korea Foresty Energy
    • /
    • v.7 no.1
    • /
    • pp.28-36
    • /
    • 1987
  • To know the possibility of fuel substitution for Diesel engine with the seed oil of Evodia daniellii, which is one of the native oil seed trees in Korea. the refined seed oil mixed with light oil in the various rates was tested in the 8 PS Diesel engine: the output, the fuel consumption rate, the governor performance, the rpm stability in the total loading condition. the content of graphite in the burned gas, and the traction coefficients at the different gear stages were maintained The following results were discussed. 1. The output at the normal revolution (2200rpm)was increased as the percent seed oil increased. At the lower rpm (2000-1500rpm )there were no consistent difference in the outputs among fuels of the different percent seed oil 2. The rate of fuel consumption was inclosed as the percent seed oil increased in each loading condition. 3. The more percent sud oil was mixed in the fuel. the better governor performance appeared at both the instantaneous and stable speed. 4. The more percent seed oil was mixed In the fuel, the more stable rpm ratio was maintained 5. The graphite content In the burned gas was increased as the load increased, but there was no apparent difference in the content at each load among the 100$\%$ seed oil, the 100$\%$ light oil, and the mixtures in various rates. 6. In all fuel mixtures the maximam traction coefficent appeared at the third transmission gear stage. Generally in over all transmission gear stages the fuel mixtures of the seed oil:light oil ratio from 7:3 to 5:5 resulted greater traction force than the other fuels.

  • PDF

Properties of Mixed Concrete Using Metakaolin and Copper Slag (메타카올린과 동(銅)슬래그를 활용한 콘크리트의 특성(特性))

  • Kim, Nam-Wook;Kim, Hak-Won;Bae, Ju-Seong
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Much energy is consumed up when making a concrete. And especially, because lots of $CO_2$ is discharged for combination material, cement, we are making efforts in order to get lid of this negative thought. Recently, much interest is given to manufacturing eco concrete which is environment friendly and its' application. We should study manufacturing of the concrete whose environment friendly performance should be improved as consistent development concept in order for various approaches to be settled down our country such as lowering of environmental load, utilization of industry wastes and improvement of environment related performance. This study inquired into utilization possibility through from various tests results after manufacturing eco type mixed concrete whose purpose is to lower environmental load in which cement and aggregates can be replaced with metakaolin which is natural material and copper slag which is industry by product.

A novel combination of sodium metabisulfite and a chemical mixture based on sodium benzoate, potassium sorbate, and sodium nitrite for aerobic preservation of fruit and vegetable discards and lactic acid fermentation in a total mixed ration for ruminants

  • Ahmadi, Farhad;Lee, Won Hee;Kwak, Wan Sup
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1479-1490
    • /
    • 2021
  • Objective: Our recent findings confirmed the effectiveness of sodium metabisulfite (SMB) in controlling the growth of undesirable microorganisms in fruit and vegetable discards (FVD); however, lactic acid bacteria (LAB) are susceptible to its antibacterial effects. Two series of experiments were conducted to enable the survivability of LAB during silage fermentation of a total mixed ration (TMR) containing SMB-treated FVD. Methods: In Exp. 1, the objective was to isolate a strain of LAB tolerable to the toxic effect of SMB. In Exp. 2, the SMB load was minimized through its partial replacement with a chemical mixture (CM) based on sodium benzoate (57%), potassium sorbate (29%), and sodium nitrite (14%). FVD was treated with SMB + CM (2 g each/kg biomass) and added to the TMR at varying levels (0%, 10%, or 20%), with or without KU18 inoculation. Results: The KU18 was screened as a presumptive LAB strain showing superior tolerance to SMB in broth medium, and was identified at the molecular level using 16S rRNA gene sequence analysis as Lactobacillus plantarum. Inoculation of KU18 in TMR containing SMB was not successful for the LAB development, biomass acidification, and organoleptic properties of the resultant silage. In Exp. 2, based on the effectiveness and economic considerations, an equal proportion of SMB and CM (2 g each/kg FVD) was selected as the optimal loads for the subsequent silage fermentation experiment. Slight differences were determined in LAB development, biomass acidification, and sensorial characteristics among the experimental silages, suggesting the low toxicity of the preservatives on LAB growth. Conclusion: Although KU18 strain was not able to efficiently develop in silage mass containing SMB-treated FVD, the partial substitution of SMB load with the CM effectively alleviated the toxic effect of SMB and allowed LAB development during the fermentation of SMB + CM-treated FVD in TMR.

Mechanical and Electrical Properties of Low-Cement Mortar Using a Large Amount of Industrial By-Products (산업부산물을 다량활용한 저시멘트 모르타르의 역학적·전기적 특성)

  • Kim, Young-Min;Im, Geon-Woo;Lim, Chang-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.43-44
    • /
    • 2023
  • This study evaluated the mechanical and electrical properties of low-cement mortar using a large amount of industrial by-products to reduce carbon emissions from the cement industry. As types of industrial by-products, blast furnace slag and fly ash, which are representative materials, were used, and ultra-high fly ash was mixed and evaluated to solve the problem of initial strength loss. In addition, in order to evaluate the electrical properties, 1% of MWCNT was incorporated relative to the powder mass. As experimental items, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age, and the rate of change in electrical resistance was measured on the 28th day of age. As a result of the experiment, the initial strength of the test specimen mixed with blast furnace slag and fly ash was significantly lower than that of 100% cement, and the specimen mixed with blast furnace slag showed strength equal to that of cement at 28 days of age. As an electrical characteristic, the electrical resistance was reduced when the load was loaded, and this reason is judged to be the effect of improving the conductivity as the connection between CNTs is narrowed by the compressive load.

  • PDF

Measurement of rock fracture toughness under mode I, II & mixed-mode conditions by using disc-typed specimens (인장, 전단 및 혼합모드에서 디스크 시험편을 이용한 암석의 파괴인성 측정에 관한 연구)

  • 장수호;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.315-327
    • /
    • 1999
  • Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, rock slope and many other practical problems in rock engineering. But a measuring method for the fracture toughness of rock, one of the mort important parameters in fracture mechanics as an intrinsic property of rock, has not been yet well established. To obtain mode I rock fracture toughness, the more favorable disc-typed specimens such as CCNBD, SCB, chevron-notched SCB and BDT were used in this study. Rock fracture toughness under mixed-mode and mode II conditions was measured by using the STCA applied to the CCNBD specimen. Size effects such as specimen thickness, diameter and notch length on fracture toughness were investigated. From the mixed-mode results, fracture envelops were obtained by applying various regression curves. The mixed-mode results were also compared with three mixed-mode failure criteria. In each fracture toughness test, acoustic emission was measured to get the data for determining the load levels of different crack propagation patterns.

  • PDF

Effect of shield gas on the characteristics of $CO_2$ laser welded 600MPa grade high strength steel (600MPa급 자동차용 고장렬강판의 $CO_2$ 레이저 용접부의 특성에 미치는 보호가스의 영향)

  • Han Tae-Kyo;Lee Bong-Keun;Kang Chung-Yun
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2004
  • The effect of shield gas on the weldability, mechanical properties and formability of CO2 laser weld joint in 600MPa grade high strength steel was investigated. Bead on plate welds were made under various welding speed and shield gas. Tensile test was carried out under the load of perpendicular and parallel direction to the weld line, Formability of the joint was evaluated by Erichsen test. As the welding speed increases, the porosity fraction decreases. The porosity fraction in the joint used Ar-$50\%He$ mixed gas as a shield gas was lower than that of the joint used Ar gas. Hardness at the weld metal of full penetrated joint was nearly equal to that of water quenched raw metal. In a tensile test under a perpendicular load to the weld axis, strength and elongation of joint produced by optimum condition were nearly equal to those of base metal. However, the strength of joint in a tensile test under a parallel load to weld axis was higher than that of raw metal, but the elongation of joint was lower than that of raw metal. Elongation and formability were further increased by the method of using Ar+He mixed gas as a shield gas as compared with Ar gas. Formabilities of joints were recorded ranging from $58\%\;to\;70\%$ of that of base metal with different shield gases.

  • PDF

A Study on the Tribological Characteristics of a Frying Pan Coated with PTFE and Nano-Diamond (나노다이아몬드가 첨가된 프라이팬 불소수지코팅의 Tribological 특성 연구)

  • Lee, Jin-Ho;Kim, Hyun-Soo;Yoon, Han-Ki;Kim, Tae-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.99-104
    • /
    • 2009
  • PTFE has good mechanical and chemical stability at a wide range of temperatures and demonstrates a low friction coefficient value. PTFE is being used for self-lubricating parts in industry. But it shows a high wear rate. Thus, PTFE and nano-diamond powder were mixed into a composite and the wear properties of a PTFE coating layer on Al6061 was investigated. A ball-on-disk type of wear tester was used under a dry condition and different temperatures of oil. After the wear test, the wear track wasexamined by optical microscope. The PTFE-diamond showed the lowest friction coefficient (0.02) of all the lubricants in the experiments. The friction coefficient was shown to be directly related to the diamond powder in the PTFE coating. Adhesion estimations were performed by a scratch test, which is mainly used for coatings. The critical load between the coating and substrate was defined through analyses of the friction load, normal load curve, and acoustic emissions, along with optical microscope observations. The scratch test results showed that an import item (SWISS) gave the highest critical load values.