• Title/Summary/Keyword: Mixed flow impeller

Search Result 39, Processing Time 0.023 seconds

A study on the effect of agitation speeds for the optimization of manufacturing process of autonomic microcapsules (자가치료용 마이크로캡슐 제조공정 최적화를 위한 교반속도 영향 연구)

  • Yun, Seong-Ho;Kim, Sang-Deok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.51-59
    • /
    • 2006
  • The physical characteristics of autonomic microcapsules manufactured with various agitation speeds in a stirred tank were observed experimentally by a particle size analyzer and an optical microscope. The flow characteristics in a stirred tank were also investigated through a 3-dimensional numerical simulation to understand the manufacturing process of autonomic microcapsules. According to the results, we found that the agitation speed was the important factor to determine the sizes of microcapsules. The impeller-induced flow allowed the jet and tip-vortex pair components in the mixed fluid of a stirred tank. The vorticity around the blades in the impeller was increased as increasing the agitation speed. In addition, the size of autonomic microcapsules was strongly affected on the small scale mixing pattern such as a tip-vortex pair.

A Study on Development of a Circulating Pump with Space Constraintst (설치공간이 제한된 순환펌프의 개발에 관한 연구)

  • Yoon, Eui-Soo;Yoo, Il-Su;Hwang, Soon-Chan;Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.24-33
    • /
    • 2011
  • A circulating pump with installation space constraints was developed satisfying performance requirements such as flowrate, head and NPSHAv. The development procedures are composed of conceptual design, configuration design, performance analysis by CFD and performance test which were established in KIMM. The developed pump is OH4 type centrifugal pump which has a mixed-flow type impeller, a double volute and a rigid coupling. As a result of tests, the pump proved to meet all the requirements including space constraints and performance.

Study on bidirectional fluid-solid coupling characteristics of reactor coolant pump under steady-state condition

  • Wang, Xiuli;Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Yu, Haoqian;Chen, Yiming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1842-1852
    • /
    • 2019
  • The AP1000 reactor coolant pump is a vertical shielded-mixed flow pump, is the most important coolant power supply and energy exchange equipment in nuclear reactor primary circuit system, whose steadystate and transient performance affect the safety of the whole nuclear island. Moreover, safety demonstration of reactor coolant pump is the most important step to judge whether it can be practiced, among which software simulation is the first step of theoretical verification. This paper mainly introduces the fluid-solid coupling simulation method applied to reactor coolant pump, studying the feasibility of simulation results based on workbench fluid-solid coupling technology. The study found that: for the unsteady calculations of the pure liquid media, the average head of the reactor coolant pump with bidirectional fluid-solid coupling decreases to a certain extent. And the coupling result is closer to the real experimental value. The large stress and deformation of rotor under different flow conditions are mainly distributed on impeller and idler, and the stress concentration mainly occurs at the junction of front cover plate and blade outlet. Among the factors that affect the dynamic stress change of rotor, the pressure load takes a dominant position.

Development of the Weight Reduction Pump for Waterjet Propulsionl (Waterjet 추진장치의 중량감소 펌프 개발)

  • Ahn, Jong-Woo;Kim, Gun-Do;Kim, Ki-Sup;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.30-37
    • /
    • 2010
  • In order to control the weight balance of the waterjet propulsion ship, the pump's weight needed to be decreased. We reduced length of pump hub, overall length of pump and chord length of impeller and stator. To keep pump efficiency and cavitation performance similar to the $1^{st}$design pump, optimum design and experiment were conducted. This paper describes experimental method and numerical analysis for pump design. At the blade design stage, performance analysis of the pump is conducted using commercial CFD codes ($BladeGen^+$,CFX-10). Required performance and cavitation characteristics of the design pumps were measured and observed using the stand-alone test apparatus. The weight of the pump was successfully decreased through a series of pump design processes composed of blade design, performance analysis and model test.

Development of air supply system(Turbo blower) for 80kW PEM fuel cell (80kW급 고분자 전해질 연료전지의 공기공급계(터보 블로워) 개발)

  • Lee, Hee-Sub;Kim, Chang-Ho;Lee, Yong-Bok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.67-72
    • /
    • 2006
  • Blower as an air supply system is one of the most important BOP (Balance of Plant) system fur FCV(Fuel Cell Vehicle). For generating and blowing compressed air, the motor of air blower consumes maximum 25% of net power and fuel cell demands a clean air. Considering the efficiency of whole FCV, low friction lubrication of high speed rotor is needed. For the purpose of reducing electrical power and supplying clean air to Fuel cell, oil-free air foil bearings are applied at the each side of brushless motor (BLDC) as journal bearings which diameter is 50mm. The normal power of driving motor has 1.7kW with the 30,000rpm operating range and the flow rate of air has maximum 160 SCFM. The impeller of blower was adopted a mixed type of centrifugal and axial which has several advantages for variable operating condition. The performance of turbo-blower and parameters of air foil bearings was investigated analytically and experimentally. From this study, the performance of the blower was confirmed to be suitable far 80kw PEM FC.

  • PDF

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling (육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구)

  • Hwang, Jong-Duck;Ku, Hak-Keun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.

An Experimental Study on the Durability Test for PEM Fuel Cell Turbo-blower (PEM 연료전지용 터보 블로워의 내구성에 관한 실험적 연구)

  • Lee, Yong-Bok;Lee, Hee-Sub;Chung, Jin-Taek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • The durability test of turbo-blower for PEM fuel cell is very important process of BOP development. It is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the air supply system to increase the reliability and to reduce the lifetime cost. In this study, turbo-blower supported by oil-free bearing is introduced as the air supply system used by 80kW proton exchange membrane fuel systems. The turbo-blower is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. The impeller of blower was adopted mixed type of centrifugal and axial. So, it has several advantages for variable operating condition. The turbo-blower test results show maximum parasitic power levels below 1.67kW with the 30,000 rpm rotating speed, the flow rate of air has maximum 163SCFM(@PR1.1). For proper application of FCV, these have to durability test. This paper describes the experiment for confirming endurance and stability of the turbo-blower for 500 hours.

Measurements on Transient Mixing Concentrations of Two Fuel Oils using a Quantitative Flow Visualization Technique (정량적 유동가시화 기술을 이용한 이종연료유 과도 혼합 농도분포 측정)

  • Yum, Joo-Ho;Doh, Deog-Hee;Cho, Gyeong-Rae;Min, Seong-Ki;Kim, Myung-Ho;Ryu, Gyong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.364-372
    • /
    • 2012
  • Transient mixing states of two different fuel oils, dimethylformamide (DMF) oil and JetA1 oil, were investigated by using a color image processing and a neural network. A tank ($D{\times}H$, $310{\times}370mm$) was filled with JetA1 oil. The DMF oil was filled at a top tank, and was mixed with the JetA1 oil in the tank mixing tank via a sudden opening which was performed by nitrogen gas with 1.9 bar. An impeller was rotated with 700 rpm for mixing enhancements of the two fuel oils. To visualize the mixing state of the DMF oil with the JetA1 oil, the DMF oil was coated with Rhodamine B whose color was red. A LCD monitor was used for uniform illumination. The color changes of the DMF oil were captured by a camcoder and the images were transferred to a host computer for quantifying the information of color changes. The color images of two mixed oils were captured with the camcoder. The R, G, B color information of the captured images was used to quantify the concentration of the DMF oil. To quantify the concentration of the DMF oil in the JetA1 oil, a calibration of color-to-concentration was carried out before the main experiment was done. Transient mixing states of DMF oil with the JetA1 oil since after the sudden infiltration were quantified and characterized with the constructed visualization technique.