• Title/Summary/Keyword: Mixed convection

Search Result 130, Processing Time 0.042 seconds

Mixed convection of air in a horizontal cylindrical annulus with rotating outer cylinder (회전하고 있는 바깥쪽 실린더를 갖고 있는 수평 원주형 환형 내에서의 공기의 혼합 대류)

  • Yu, Ju-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.551-561
    • /
    • 1997
  • Mixed convection of air in a horizontal concentric cylindrical annulus is investigated numerically. Isothermal boundary conditions are prescribed at the inner and outer cylinders, with the inner cylinder being warmer. The forced flow is induced by the outer cylinder which is rotating slowly with constant angular velocity with its axis at the center of the annulus. The effect of the forced flow on the flow pattern and heat transfer of natural convection is investigated for the annulus of (inner-cylinder radius/gap width) = 1. There appear two eddies, one eddy or no eddy according to the Rayleigh and Reynolds numbers. Map of the three flow regimes is constructed on the Ra-Re plane. (author). 28 refs., 9 figs., 2 tabs.

Mixed-Convection in an Annulus Between Co-Rotating Horizontal Cylinders (동시 회전하는 수평 실린더 내 환상공간에서의 혼합대류)

  • Lee, Gwan-Su;Kim, Yang-Hyeon;Im, Gwang-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.622-628
    • /
    • 2002
  • Numerical analysis has been carried out for two-dimensional steady and unsteady mixed convection in the annulus between co-rotating horizontal cylinders with a heated inner cylinder. The ratio of annulus gap($\sigma$) is taken from 1 to 10 and the order of mixed-convection parameter B(=Gr/(1+Re)$^2$) varies from 10$^4$to $10^0$. The flow patterns over this parameter range are steady multicellular, oscillatory multicellular or steady unicellular. The addition of co-rotating of both cylinders stabilizes the flow in the annulus and weakens the unsteadiness. Even in the large values of rotating parameter such as of $10^0$/($\sigma$=2) and 10$^2$($\sigma$=10), the flow pattern becomes asymptotic to the steady unicellular flow, like as in the rigid-body rotating flow.

An Experimental Investigation of Unsteady Mixed Convection in a Horizontal Channel with Cavity Using Thermo-Sensitive Liquid Crystals

  • Bae, Dae-Seok;Cai, Long-Ji;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.987-993
    • /
    • 2009
  • An experimental study is performed to investigate unsteady mixed convection in a horizontal channel with a heat source. Particle image velocimetry (PIV) with thermo-sensitive liquid crystal (TLC) tracers is used for visualization and analysis. This method allows simultaneous measurement of velocity and temperature fields at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. It is found that the periodic flow of mixed convection in a cavity appears at very low Reynolds numbers (Re<0.4), and the period decreases with increasing Reynolds numbers and increases with increasing aspect ratio.

3-D Numerical Analysis on a low Reynolds Number Mixed Convection in a Horizontal Rectangular Channel (수평 사각채널 내 저 레놀즈수 혼합대류 유동의 3차원 수치해석)

  • Piao, Ri-Long;Bae, Dae-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.210-215
    • /
    • 2005
  • A three-dimensional numerical simulation is performed to investigate on a low Reynolds number mixed convection in a horizontal rectangular channel with the upper part cooled and the lower part heated uniformly. The three-dimensional governing equations are solved using a finite volume method. For convective term, the central differencing scheme is used and for the pressure correction, the PISO algorithm is used. Solutions are obtained for A=4, Pr=0.72, 10, 909, the Reynolds number ranging from $2.1{\times}10^{-2}$ to $1.2{\times}10^{-1}$, the Rayleigh number is $3.5{\times}10^4$. It is found that vortex roll structures of mixed convection in horizontal rectangular channel can be classified into three roll structures which affected by Prandtl number and Reynolds number.

  • PDF

Characteristics of the Mixed Convection Flow and Heat Transfer in a Channel with Open Cavity (개방된 캐비티를 가진 채널 내에서의 혼합대류 유동과 열전달 특성)

  • Ko, Y.C.;Bae, D.S.;Kim, N.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.56-64
    • /
    • 2007
  • A numerical simulation is carried out mixed convection in horizontal channel with a heat source from below of rectangular cavity. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Reynolds number ($10^{-2}{\leq}Re{\leq}50$), the Rayleigh number ($10^3{\leq}Ra{\leq}2.06{\times}10^5$), the Prandtl number ($0.72{\leq}Pr{\leq}909$), the aspect ratio ($0.5{\leq}AR=W/H{\leq}2$) and the angle of inclination ($0^{\circ}{\theta}60^{\circ}$). Mean Nusselt number distributions were obtained and effect of Reynolds number, Rayleigh number and Prandtl number on mixed convection in the horizontal channel with rectangular cavity were investigated.

  • PDF

A Numerical Study on the Mixed Convection in Open-Ended Inclined Channels (양 끝이 개방된 경사진 채널 내에서의 혼합대류에 관한 수치적 연구)

  • Piao Ri-Long;Bae Dae-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.78-85
    • /
    • 2005
  • A numerical calculation is performed to study the effects of buoyancy force on the heat transfer characteristics of laminar forced convection flow in inclined parallel plates with the upper part cooled and the lower Part heated uniformly. Numerical results are presented for the Reynolds number ranges from $4.0\times10^{-3}$ to $1.13\times10^{-1}$. the angle of inclination, $\theta$. from 0 to 90 degree and Pr of the high viscosity fluid is 909. It is found that the flow pattern of mixed convection in inclined parallel Plates can be classified into four patterns which affected by Reynolds number and the angle of inclination.

A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED FINITE ELEMENT METHOD FOR THE CONVECTION DOMINATED SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.19-34
    • /
    • 2016
  • In this paper, we present a split least-squares characteristic mixed finite element method(MFEM) to get the approximate solutions of the convection dominated Sobolev equations. First, to manage both convection term and time derivative term efficiently, we apply a least-squares characteristic MFEM to get the system of equations in the primal unknown and the flux unknown. Then, we obtain a split least-squares characteristic MFEM to convert the coupled system in two unknowns derived from the least-squares characteristic MFEM into two uncoupled systems in the unknowns. We theoretically prove that the approximations constructed by the split least-squares characteristic MFEM converge with the optimal order in L2 and H1 normed spaces for the primal unknown and with the optimal order in L2 normed space for the flux unknown. And we provide some numerical results to confirm the validity of our theoretical results.

Vertical arrangement of coils for efficient cargo tank heating

  • Magazinovic, Gojko
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.662-670
    • /
    • 2019
  • Tanker cargo tanks are equipped with the means of raising and maintaining the cargo discharge temperature to a suitable level. In this paper, a new heating coil design is proposed and analyzed. Contrary to conventional designs, wherein the heating coils are evenly distributed over the tank bottom, the proposed design arranges the heating coils in the central part of the tank bottom, in a vertical direction. Due to the intensive cargo circulation generated, a forced convection is superimposed on a buoyancy-driven natural convection, providing a more efficient mixed convection heat transfer mechanism. Numerical simulations performed by using a finite volume method show that in the case of 7-bar steam Bunker C heavy fuel oil heating, a five-hour circulation phase average heat transfer coefficient equals 199.2 W/m2K. This result might be taken as an impetus for the more thorough experimental examination.

A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm (PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구)

  • Choi, Y.G.;Chung, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF