• Title/Summary/Keyword: Mixed concrete

Search Result 1,160, Processing Time 0.024 seconds

Fundamental Study on Recycling Waste Foundry Sand as Fine Aggregate for Concrete (폐주물사를 콘크리트용 잔골재로 재활용하기 위한 기초연구)

  • 문한영;최연왕;송용규;신동구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.281-286
    • /
    • 2001
  • The development of automobile, vessel, rail road, and machine industry leads increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 900,000 ton a year, but most WFS buries itself and only 5~6% WFS is recycled as a material in construction materials. In this study, WFS is used as a fine aggregate for concrete. Five types of concretes aimed at the specified strength of 240$\pm$10 kgf/$cm^{2}$ , air contents of 4.5$\pm$1% and slump of 12$\pm$1.5cm were mixed with washed coarse seashore sand(WFS) in which salt was removed and then optimum mix proportion of concrete was determined. Moreover, basic properties such as setting time, workability, bleeding and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In .addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

  • PDF

A Study on Evaluation of High Early Strength Concrete as Pavement Overlay Materials for Early Traffic Opening(2) (신속개방형 콘크리트 도로포장재의 설계를 위한 평가 연구(2))

  • 엄태선;임채용;유재상;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.233-238
    • /
    • 2001
  • In road Pavements, it is known that cement concrete pavement has superior durability, safety compared with asphalt pavement. But in repairing pavement, cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixed concrete because of rapid setting time, high slump loss and other restrictions. We aim to develope special cement and concrete developing 1 day strength of over 300 kg/$\textrm{cm}^2$ to open the road within one day and workable time is maintained over 1 hour that can be used as ready mixed concrete. In this study, we produced cement using rapid-hardening cement, Hauyne clinker, anhydride gypsum and accelerator and studied on its properties. The comperssive strength was over 400 kg/$\textrm{cm}^2$ and tensile at 1 day and workable time was maintained for over 1 hour.

  • PDF

An experimental study on the evaluation of chloride attack resistance in mortar and concrete mixed with pozzolanic admixtures (포졸란계 혼화재를 혼입한 모르타르 및 콘크리트의 내염해 저항성 평가에 관한 실험적 연구)

  • 박정준;김도겸;하진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.461-466
    • /
    • 2000
  • To improve the quality of concrete, we usually consider the reduction of water/cement ratio, the increase of concrete cover depth and the use of mineral admixtures. Reportedly, the use of admixtures make concrete more durable and tighten against water. But, it is needed to study more about the relationship between the admixtures and the chloride ion diffusion. Therefore, in this study, we focused on the chloride ion diffusion properties of the pozzolanic admixtures such as fly-ash, slag and silica fume which are known as being useful on chloride attack resistance when mixed into mortar or concrete. Furthermore, we treed to analyze the correlation between mortar and concrete using the admixture, which is useful for analyzing chloride ion diffusion mechanism.

  • PDF

Physical Properties of Concrete mixed with Fine Sand and Copper Slag (동슬래그 혼합 잔골재를 이용한 콘크리트의 물리적 특성)

  • 이진우;김경민;배연기;이재삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.15-18
    • /
    • 2003
  • Development of the construction industry generally exhausts natural aggregate. Hence it is problem to the lack of supply and quality deterioration, so the resource saving and protection of environment is made an effort through recycling by-product. This study presents that fundamental properties of concrete which used cooper slag as alternate sand of low fineness modulus and plan of cooper slag as concrete aggregate. Testing factors are concrete's slump, air contents, unit weight and compressive strength. The results of this study are as follows; (1) Concrete slump is generally satisfied with the condition but is inferior to the others in substitution rates 30%. Also air contents are 3.1-4.1% and go up according to increase substitution rate. (2) Unit weight increase in 1.1% as the mixing ratio of cooper slag argument 10%. (3) compressive strength of cooper slag concrete is similar to plain and especially higher 11-15% in W/C 45%, 50%. So it seems that aggregate mixed cooper slag is suitable to low water-cement ratio mixture.

  • PDF

Properties of Superplasticized Ready Mixed Concrete for Heavily Reinforced Concrete Structure (철근배근이 복잡한 구조물에 타설하기 쉬운 초유동 레미콘 특성)

  • 조일호;신무섭;백일환;이건갑
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.210-219
    • /
    • 1997
  • This research which lays emphasis on ready mixed concrete standard 25-210~240kgf/$\textrm{cm}^2$ shows the influence caused by the ratio of ingredients of superplasticized concrete, and the flowing and strength development of mortar and concrete according to the ratio of ingredients. This research shows that flowability, compactability, and segregation resistivity are the best condition under the following ratio of ingredients: fly ash 30%, unit binders 490~510kg/$\textrm{m}^3$, unit weight of water 184~194kg/$\textrm{m}^3$, fine aggregate ratio 49~51%, and superplasticizer 1.1~1.5%. Following this ratio of ingredients, the reinforced concrete structures to need design strength 25-210~240kgf/$\textrm{cm}^2$ can apply to complicated constructions.

  • PDF

Deicing Performance with Deicer Types (제설제 종류에 따른 제설성능 평가)

  • Lee, Byung-Duck;Lee, Chan-Young;Yun, Byung-Sung;Lee, Joo-Kwang;Chung, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.371-374
    • /
    • 2005
  • In this study, calcium chloride($CaCl_2$), sodium chloride (NaCl), organic acids-containing deicer(NS 40, NS 100), mixed deicier($NaCl\;70\%\;+\;CaCl_{2}\;30\%,\;NS\;40\;70\%\;+\;CaCl_{2}\;30\%,\;NaCl\;70\%\;+\;NS\;40\;30\%,\;NS\;40\;70\%\;+\;NaCl\;30\%$) is investigated based on the laboratory test for deicing performance. Test items for deicing performance were ice melting and ice penetration, freezing point depressions and eutectic points, pH, thermal properties for selected deicing chemicals. As a test results, in case of the use chloride-containing deicier in area that concrete structures has subjected to freez-thaw reaction in winter season, it showed desirable method that use deicing chemicals mixed with optimum ratio rather than use one deicing chemicals when is consider to deicing performance and effects, corrosion of steel materials, freez-thaw resistance of concrete. When use various deicing chemicals mixed, NS40($70\%$)+Calcium chloride($30\%$) showed the best effective method.

  • PDF