• Title/Summary/Keyword: Mixed Sensor

Search Result 230, Processing Time 0.03 seconds

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

Mixed Deployment Methods for Reinforcing Connectivity of Sensor Networks (센서네트워크 연결성 강화를 위한 거점 노드 혼합 배치 기법 연구)

  • Heo, Nojeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.169-174
    • /
    • 2014
  • Practical deployment methods for sensor nodes are demanding as applications using sensor nodes increase. In particular, node connectivity is crucial not only for the network longevity but also for direct impacts on sensing and data collection capability. Economic requirement at building sensor networks and often limited access for sensor fields due to hostile environment force to remain at random deployment from air. However, random deployment often result in lost connection problem and inefficient network topology issue due to node irregularity. In this paper, mixed deployment of key nodes that have better communication capability is proposed to support the original deployment into working in an efficient way. Node irregularity is improved by introducing mixed nodes and an efficient mixed node density is also analyzed. Simulation results show that the mixed deployment method has better performance than the existing deployment methods.

The development of new oxide materials and modified mixed potential sensing method for highly sensitive NOx sensor (자동차 배기가스용 NOx센서의 감도향상를 위한 새로운 산화물 감지물질과 변형된 혼합전위 센서의 개발)

  • Park, Jin-Su;Yoon, Byoung-Young;Park, Chong-Ook
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • The sensing characteristics of new oxide sensing materials, NiO, NiO-YSZ and CuO, were evaluated at the temperature of $700^{\circ}C$ in 10 % $O_2$containing atmosphere. Through simultaneous response to $NO_2$ and NO, the sensing mechanism of oxide electrode was studied and the relation of EMF and NO/$NO_2$ concentrations was elucidated. Moreover, for highly sensitive NOx sensor, modified mixed potential sensor which has at least two oxide electrodes was proposed.

Sensing Characterization of Metal Oxide Semiconductor-Based Sensor Arrays for Gas Mixtures in Air

  • Jung-Sik Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.195-204
    • /
    • 2023
  • Micro-electronic gas sensor devices were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx), ammonia (NH3), and formaldehyde (HCHO), as well as binary mixed-gas systems. Four gas sensing materials for different target gases, Pd-SnO2 for CO, In2O3 for NOx, Ru-WO3 for NH3, and SnO2-ZnO for HCHO, were synthesized using a sol-gel method, and sensor devices were then fabricated using a micro sensor platform. The gas sensing behavior and sensor response to the gas mixture were examined for six mixed gas systems using the experimental data in MEMS gas sensor arrays in sole gases and their mixtures. The gas sensing behavior with the mixed gas system suggests that specific adsorption and selective activation of the adsorption sites might occur in gas mixtures, and allow selectivity for the adsorption of a particular gas. The careful pattern recognition of sensing data obtained by the sensor array made it possible to distinguish a gas species from a gas mixture and to measure its concentration.

Improvement of Long-term Stability in $SnO_2$ Based Gas Sensor for Monitoring Offensive Odor

  • Park, Jong-Hun;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.304-308
    • /
    • 2000
  • WO$_3$/SnO$_2$ceramics has been suggested as an effective sensing material for monitoring offensive odor or pollutant gases. This work was focussed on improving long-term stability, which has been a principal problem generally taking place in SnO$_2$semiconductor gas sensor. Miniaturized thick film gas sensors were fabricated by screen printing technique. Two types of sensor materials, W doped SnO$_2$and WO$_3$mixed SnO$_2$, were comparatively investigated on those long-term stability and sensitivites to several gases. Small amount of W doping(0.1 mol%) into SnO$_2$largely improved the long-term stability. The W(0.1 mol%) doped SnO$_2$gas sensor had higher sensitivities to both acetone and alcohol compared with WO$_3$(5 wt%) mixed SnO$_2$gas sensor. On the contrary, WO$_3$(5 wt%) mixed SnO$_2$gas sensor showed more superior sensitivity to cigarette smoke due to larger W content.

  • PDF

Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors

  • Balamurugan, Chandran;Song, Sun-Ju;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Semiconducting nanomaterials have attracted considerable interest in recent years due to their high sensitivity, selectivity, and fast response time. In addition, for portable applications, they have low power consumption, lightweight, simple in operation, a low maintenance cost. Furthermore, it is easy to manufacture microelectronic sensor structures with metallic oxide sensitive thin layers. The use of semiconducting metal oxides to develop highly sensitive chemiresistive sensing systems remains an important scientific challenge in the field of gas sensing. According to the sensing mechanisms of gas sensors, the overall sensor conductance is determined by surface reactions and the charge transfer processes between the adsorbed species and the sensing material. The primary goal of the present study is to explore the possibility of using semiconducting mixed metal oxide nanostructure as a potential sensor material for selective gases.

A Study of Detection Properties of Piezoresistive CNT/PDMS Devices with Porous Structure (다공성 구조를 가진 압저항 CNT/PDMS 소자의 감지특성 연구)

  • Wonjun Lee;Sang Hoon Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.165-172
    • /
    • 2024
  • In this study, we investigated the detection properties of piezoresistive carbon nanotubes/polydimethylsiloxane (CNT/PDMS) devices with porous structures under applied pressure. The device, having dimensions of 10 mm × 10 mm × 5 mm, was fabricated with a porosity of 74.5%. To fabricate piezoresistive CNT/PDMS devices, CNTs were added using two different methods. In the first method, the CNTs were mixed with PDMS before the fabrication of the porous structure, while in the second, the CNTs were coated after the fabrication of the porous structure. Various detection properties of the fabricated devices were examined at different applied pressures. The CNT-coated device exhibited stable outputs with lesser variation than the CNT-mixed device. Moreover, the CNT-coated device exhibited improved reaction properties. The response time of the CNT-coated device was 1 min, which was approximately about 20 times faster than that of the CNT-mixed device. Considering these properties, CNT-coated devices are more suitable for sensing devices. To verify the CNT-coated device as a real sensor, it was applied to the gripping sensor system. A multichannel sensor system was used to measure the pressure distribution of the gripping sensor system. Under various gripping conditions, this system successfully measured the distributed pressures and exhibited stable dynamic responses.

Energy-efficient Positioning of Cluster Heads in Wireless Sensor Networks

  • Sohn, Surg-Won;Han, Kwang-Rok
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2009
  • As one of the most important requirements for wireless sensor networks, prolonging network lifetime can be realized by minimizing energy consumption in cluster heads as well as sensor nodes. While most of the previous researches have focused on the energy of sensor nodes, we devote our attention to cluster heads because they are most dominant source of power consumption in the cluster-based sensor networks. Therefore, we seek to minimize energy consumption by minimizing the maximum(MINMAX) energy dissipation at each cluster heads. This work requires energy-efficient clustering of the sensor nodes while satisfying given energy constraints. In this paper, we present a constraint satisfaction modeling of cluster-based routing in a heterogeneous sensor networks because mixed integer programming cannot provide solutions to this MINMAX problem. Computational experiments show that substantial energy savings can be obtained with the MINMAX algorithm in comparison with a minimum total energy(MTE) strategy.

  • PDF

Study of Digital Air Meter Used Pressure Sensor for Air Content of Freshly Mixed Concretes (압력센서를 이용한 디지털 콘크리트 공기량 시험기 개발에 관한 연구)

  • Yoon, In-Jun;Lee, Kyoung-Moon;Seo, In-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.566-569
    • /
    • 2006
  • The purpose of this study is to develop digital air meter used pressure sensor for measurement of air content in freshly mixed concrete by pressure method. The digital air meter can enhanced measurement accuracy and uniformity of air content in freshly concretes, according to use of pressure sensor and measuring process automation. Finally, the digital air meter in this study is improved reproducibility and reliability of measurement compared with analog air meter.

  • PDF