• Title/Summary/Keyword: Mixed Gas

Search Result 1,366, Processing Time 0.038 seconds

A Study on the Additives of mixed Gas charged in Thermostatic Bulb for Expansion Valve (팽창밸브 개폐용 감온통 혼합가스의 첨가제 연구)

  • Kim, Si-Young;Ju, Chang-Sik;Koo, Su-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.126-132
    • /
    • 2014
  • The P-T characteristics of mixed refrigerant in thermostatic expansion valve sensing bulb were studied using R-134a and R-410A refrigerant. The characteristics of mixed refrigerant were investigated according to pressure variation and the variation of composition ratio of R-134A and R-410A in the temperature range of $-15^{\circ}C{\sim}15^{\circ}C$. The Thermodynamic characteristic values of the mixed refrigerants were identified using the characteristic value analysis program of mixed refrigerant(Refrop v9.0, NIST). The P-T characteristics in the case of the mixing ratio of 90:10 for R-410A and R-134A were the same result as R-22. And the physical properties showed similar results with R-22. The Maximum operating pressure(MOP) of mixed refrigerant showed a tendency to decrease with decreasing the mixing ratio of additive gases($N_2$ or He) gases. The characteristics in the case of the mixing ratio of 80:1 for mixed refrigerant and additive gases were the similar result as Reference refrigerant.(R-22 MOP, Sporlan company) In addition $N_2$ and He, both showed the same results. It was able to confirm that a MOP on the thermostatic expansion valve sensing bulb can be maintained by adjusting the mixing ratio of mixed refrigerant gases and additive gases.

A Study on the Dynamic Characteristics of Nitrogen Mixed Gas for Thermostatic Expansion Valve Sensing Blub (온도 감지식 팽창밸브 감온통 질소가스 혼합냉매의 동특성 연구)

  • Kim, Si-Young;Koo, Su-Jin;Ju, Chang-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • The pressure and temperature characteristics of mixed refrigerant gases in bulb for thermostatic expansion valve were studied using R22 refrigerant and $N_2$ gases. The characteristics of mixed refrigerant gases were investigated according to pressure variation and the variation of composition ratio of R22 refrigerant and $N_2$ gases in the temperature range of -$15^{\circ}C$~$15^{\circ}C$. The Maximum operating pressure(MOP) of mixed refrigerant gases were showed a tendency to decrease with decreasing the mixing ratio of $N_2$ gas. The characteristics in the case of the mixing ratio of 90:1 for R22 refrigerant and $N_2$ gases were the same result as Reference refrigerant. In addition, the characteristics of the mixed refrigerant gases in the mixing ratio of 90:1 for R22 refrigerant and $N_2$ gases were showed almost linear in the measurement range of pressure-temperature, and the physical properties also were showed similar results with Reference refrigerant. It was able to confirm that a MOP on the thermostatic expansion valve for sensing bulb can be maintained by adjusting the mixing ratio of R22 refrigerant and $N_2$ gases.

Electrical AC Insulation Breakdown Characteristics of Various Epoxy / Heterogeneous Inorganic Mixed Composite (여러 종류의 에폭시/이종무기물 혼합 콤포지트의 전기적 교류 절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1463-1470
    • /
    • 2018
  • In this study, 20 types of samples were prepared by mixing different kinds of inorganic materials to develop insulation materials for epoxy - based GIS substation equipment used under high voltage environmentally friendly insulation gas. One of the electrical characteristics, AC insulation breakdown experiment was performed. As mixing ratio of mixed heterogeneous inorganic materials, the dielectric breakdown strength was increased with increasing filler ratio of micro silica, micro silica : micro Alumina, 1:9, 3:7, 5:5, 7:3, 9:1, and decreased as the filling amount of micro alumina increased. The AC insulation breakdown characteristics were the best when the composition ratio was 9:1. The higher the content of silica, the better the interfacial properties, and the larger the alumina content ratio, the worse the interfacial properties.

Process Control for the Synthesis of Ultrafine Si3N4-SiC Powders by the Hybrid Plasma Processing (Hybrid Plasma Processing에 의한 Si3N4-SiC계 미립자의 합성과정 제어)

  • ;吉田禮
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.681-688
    • /
    • 1992
  • Ultrafine Si3N4 and Si3N4+SiC mixed powders were synthesized through thermal plasma chemical vapor deposition(CVD) using a hybrid plasma, which was characterized by the supersposition of a radio-frequency plasma and arc jet. The reactant SiCl4 was injected into an arc jet and completely decomposed in a hybrid plasma, and the second reactant CH4 and/or NH3 mixed with H2 were injected into the tail flame through double stage ring slits. In the case of ultrafine Si3N4 powder synthesis, reaction efficiency increased significantly by double stage injection compared to single stage one, although crystallizing behaviors depended upon injection speed of reactive quenching gas (NH3+N2) and injection method. For the preparation of Si2N4+SiC mixed powders, N/C composition ratio could be controlled by regulating the injection speed of NH3 and/or CH4 reactant and H2 quenching gas mixtures as well as by adjusting the reaction space.

  • PDF

Performance Characteristics on the Mixed Flow Type Absorption Chiller-Heater (혼합흐름 사이클용 흡수식 냉온수기의 성능특성)

  • Yoon, J.I.;Shin, G.B.;Park, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.351-360
    • /
    • 1996
  • This study focuses on the development and evaluation of the high efficiency absorption chiller-heater, which can be applied to a direct gas fired, double effect system with 40RT (508,000kJ) cooling capacity. The performance of the absorption chiller-heater is investigated through cycle simulation and experiment to obtain the system characteristics with the inlet tenperature of cooling, chilled water, and gas input flow rate. The efficiency of the different cycles has been studied and the simulation and experiment results show that higher coefficient of performance could be obtained for mixed flow cycle. The five percent difference was obtained from the comparison between experimental and cycle simulation results. As a result of this study, the optimum designs were determined based on the operating conditions and the coefficient of performance.

  • PDF

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine using Mixed Fuels (혼합연료를 이용한 예혼합 압축착화 디젤엔진의 연소특성)

  • 조병호;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.58-64
    • /
    • 2002
  • A diesel engine has various merits such as high thermal-efficiency, superior fuel consumption and durability. Therefore the number of diesel engine in the world is increasing. As the seriousness of environmental pollution increases in the world, the method to reduce the noxious materials of CO2, NOx and P.M. is very important subject to correspond to exhaust gas regulations. A new concept, so called premixed charge compression ignition(PCCI), is focused among the various corresponding manners. In this study, we investigated the combustion characteristics of PCCI engine using a mixed fuels with that of commercial diesel engine. Finally we grasped a emission characteristics of PCCI engine. From this experiment, it could be found that NOx reduction is caused by the lower maximum temperature and soot reduction is caused by rapid combustion under diffusion combustion part. Also, it was found that 1st-combustion(cool flame) and 2nd-combustion(hot flame) is appeared in heat release curve, exhaust gas temperature is diminished and combustion variation is increased according to increasing of gasoline ratio.

A Study of Reduced and Carburized Reactions in Dry-milled $WO_3+Co_3O_4+C$ Mixed Powders with Different Carbon Content

  • Im, Hoo-Soon;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.648-649
    • /
    • 2006
  • The dry-milling technique was used for mixing and crushing oxides and graphite powders. The ratio of ball-to-powder was 30:1 and argon gas was filled in jar. The excess carbon was $10{\sim}20wt%$ of the stoichiometric amount. The dry-milling was carried for 20 hours. The mixed powders were reduced and carburized at $900{\sim}980^{\circ}C$ for 3 hours flowing Ar gas in tube furnace. The dry-milled powders showed the wide diffraction patterns of X-ray. The reactions of reduction and carburization were completed in 3 hours at $980^{\circ}C$. After the reactions, the mean size of WC particles was about 200 nm. The content of free carbon in WC/Co mixed powders was less as the reaction temperature increased.

  • PDF

Electrical and Optical properties of Xe EEFL by mixed gas (Xe EEFL의 혼합가스에 따른 전기 광학적 특성)

  • Kim, Nam-Goon;Lee, Seong-Jin;Yang, Jong-Kyung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1568-1569
    • /
    • 2007
  • TFT-LCD used in display area is not a light-emissive device itself but TFT-LCD can overcome through the employ of the backlight unit (BLU). BLU is very important device in TFT-LCD system. However, the old-fashion BLU of CCFL type is crucible to the health due to the contained material, mercury (Hg). Moreover, strong temperature dependency of lamp employed with Hg becomes the other disadvantage in practical usage. To solve these problems, Hg-Free lamp with strong thermal resistance property is required to displace the Hg lamp. We studied optical and electrical properties of Xe-Ne-He mixed gas that is dependent on change of mixed ratio and pressure. In our results, the designed lamp without the phosphorescent material has the lowest firing voltage at xe 50%(Ne:He=9:1).

  • PDF

High-Temperature Corrosion of T92 Steel in N2/H2O/H2S-Mixed Gas

  • Shi, Yuke;Kim, Min Jung;Park, Soon Yong;Abro, M. Ali;Yadav, Poonam;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.125-128
    • /
    • 2016
  • The ASTM T92 steel was corroded at $600^{\circ}C$ and $800^{\circ}C$ at 1 atm of $N_2/3.1%H_2O/2.42%H_2S-mixed$ gas. The formed scales were thick and fragile. They consisted primarily of the outer FeS scale and the inner (FeS, $FeCr_2S_4$)-mixed scale containing a small amount of the $Cr_2O_3$ scale. This indicated that corrosion occurred mainly via sulfidation rather than oxidation due to the $H_2S$ gas. Since FeS was present throughout the whole scale, T92 steel was non-protective, displaying high corrosion rates.