• Title/Summary/Keyword: Mix proportioning

Search Result 48, Processing Time 0.033 seconds

An Experimental Study for Improving the Applicability of High-Strength Concrete (고강도 콘크리트의 실용성 향상을 위한 실험적 연구)

  • 유영찬;민병렬
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.2
    • /
    • pp.83-92
    • /
    • 1992
  • 본 연구의 목적은 현장에서 구입 가능한 저품질의 재료를 사용한 일련의 실험을 통하여 28일 압축강도와 물\ulcorner시멘트비와 관계를 유출함으로써 고강도 콘크리트의 배합설계식을 얻기 위한 것이다. 목표슬럼프는 고층건물에서의 시공성을 고려하여 15$\pm$2cm로 하였으며 혼화제로는 고성능감수제를 사용하였다. 실험결과로부터 고강도콘크리트의 응력-변형도 특성을 비롯하여 탄성계수, 포아송비, 단위중량 등 고강도 콘크리트의 일반적인 재료성질을 얻었으며 본 연구에서 제안한 고강도콘크리트의 배합설계식은 국내현장조건을 고려한 실용식으로 고강도콘크리트으 설계 및 시공을 위한 기초자료로 사용 가능하다고 판단된다.

Design and Site Installation of Outdoor Sculpture of Light Emotion Friendly Concrete (감성친화형콘크리트(LEFC) 실외 조형물 디자인 및 현장설치)

  • Seo, Seung-Hoon;Kim, Soo-Yeon;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.142-143
    • /
    • 2020
  • A study was conducted on the production of LEFC using the Precast method, not the on-site construction. LEFC, Light Emotion Friendly Concrete, has the advantage of plastic rods being inserted to allow light to transmit, but because of the lack of adhesion to concrete, it leads to a decline in mechanical performance and durability. Therefore, it is necessary to apply precasting techniques to ensure homogeneous and superior quality of LEFC. In this study, wooden molds were used and plastic rods were arranged on porous acrylic plates. Prototyping was carried out with a UHPC mix proportioning to ensure flowability, self-consolidating performance and mechanical performance.

  • PDF

Mix Design of Lightweight Aggregate Concrete and Determination of Targeted Dry Density of Concrete (경량골재 콘크리트의 배합설계 및 목표 콘크리트 기건밀도의 결정)

  • Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.491-497
    • /
    • 2013
  • The objective of the present study is to establish a straightforward mixture proportioning procedure for structural lightweight aggregate concrete (LWAC), and evaluate the selection range of the targeted dry density of concrete against the designed concrete compressive strength. In developing this procedure, mathematical models were formulated based on a nonlinear regression analysis over 347 data sets and two boundary conditions of the absolute volume and dry density of concrete. The proposed procedure demonstrated the appropriate water-to-cement ratio and dry density of concrete to achieve the designed strength decrease with the increase in volumetric ratio of coarse aggregates. This trend was more significant in all-LWAC than in sand-LWAC. Overall, the selection range of the dry density of LWAC exists within a certain range according to the designed strength, which can be obtained using the proposed procedure.

Nano-engineered concrete using recycled aggregates and nano-silica: Taguchi approach

  • Prusty, Rajeswari;Mukharjee, Bibhuti B.;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.253-268
    • /
    • 2015
  • This paper investigates the influence of various mix design parameters on the characteristics of concrete containing recycled coarse aggregates and Nano-Silica using Taguchi method. The present study adopts Water-cement ratio, Recycled Coarse Aggregate (%), Maximum cement content and Nano-Silica (%) as factors with each one having three different levels. Using the above mentioned control parameters with levels an Orthogonal Array (OA) matrix experiments of L9 (34) has selected and nine number of concrete mixes has been prepared. Compressive Strength, Split Tensile Strength, Flexural Tensile Strength, Modulus of Elasticity and Non-Destructive parameters are selected as responses. Experimental results are analyzed and the optimum level for each response is predicted. Analysis of 28 days CS depicts that NS (%) is the most significant factor among all factors. Analysis of the tensile strength results indicates that the effect of control factor W/C ratio is ranked one and then NS (%) is ranked two which suggests that W/C ratio and NS (%) have more influence as compared to other two factors. However, the factor that affects the modulus of elasticity most is found to be RCA (%). Finally, validation experiments have been carried out with the optimal mixture of concrete with Nano-Silica for the desired engineering properties of recycled aggregate concrete. Moreover, the comparative study of the predicted and experimental results concludes that errors between both experimental and predicted values are within the permissible limits. This present study highlights the application of Taguchi method as an efficient tool in determining the effects of constituent materials in mix proportioning of concrete.

RESEARCH TRENDS IN THE CELLULOSE REINFORCED FIBROUS CONCRETE IN USA

  • Soroushian, Parviz;Ravanbakhsh, Sizvosh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.3-23
    • /
    • 1997
  • The growth in fast-track construction and repair has prompted major efforts to develop high-early-strength concrete mix compositions. Such mixtures rely on the use of relatively high cement contents and accelerator dosages to increase the rate of strength development. The measures, however, seem to compromise the long-term performance of concrete in applications such as full-depth patches as evidenced by occasional premature deterioration of such patches. The hypothesis successfully validated in this research was that traditional methods of increasing the early-age strength of concrete, involving the use of high cement and accelerator contents, increase the moisture and thermal movements of concrete. Restraint of such movements in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduced microcracks and thus increase the permeability of concrete. This increase in permeability accelerates various processes of concrete deterioration, including freeze-thaw attack. Fiver reinforcement of concrete is an effective approach to the control of microcrack and crack development under tensile stresses. Fibers, however, have not been known of accelerating the process of strength gain in concrete. The recently developed specialty cellulose fibers, however, were found in this research to be highly effective in increasing the early-age strength of concrete. This provides a unique opportunity to increase the rate of strength gain in concrete without increasing moisture an thermal movements, which actually controlling the processes of microcracking and racking in concrete. Laboratory test results confirmed the desirable resistance of specialty cellulose fiber reinforced High-early-strength concrete to restrained shrinkage microcracking an cracking, and to different processes of deterioration under weathering effects.

  • PDF

A Fundamental Test of Temperature Crack Reduction Method Application by Setting Time Control of Large-Scaled Mat Foundation Mass Concrete (초대형 매트기초 매스 콘크리트의 응결시간조정에 의한 온도균열저감 공법적용의 기초적 실험)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Constructing large-scale mat foundation mass concrete is increasing for the stability of building structure, because a lot of high rise building are being built in order to make full use of limited space. However, It is of increasing concerns that because limited placing equipments, available job-site and systems for mass concete placement in construction field do not allow to place great quantity of concrete at the same time in large scale mat foundation, consistency between placement lift can not be secured. And also, it is likely to crack due to stress caused by the difference of hydration heat generation time. To find out the solution against above problems, this study is to reconfirm the performance of normal concrete designed by mix proportion and super retarding concrete. The Fundamental test shows what happens if low heat proportioning and control method of setting time are applied at the job-site of newly constructed high rise building. The test result show that slump flow of concrete has been somewhat increased as the target retarding time gets longer, while the air content has been slightly decreased but this is no great difference from normal concrete. The setting time shows to be retarded as target retarding time gets longer, the range of retarding time increases. It is necessary to increase the amount of mix of super retarding agent in the proportion ration by setting curing temperature high since outdoor curing is about 6 hours faster than standard curing, which means the temperature of the concrete will be higher than the temperature of the surrounding environment, due to its high hydration heat when applying in a construction site. The compressive strength of super retarding concrete appears to be lower than normal concrete due to the retarding action in the early stage. However, as the time goes by, the compressive strength gets higher, and by the 28th day the strength becomes the same or higher than normal concrete.

A Study on the Development of Water-Permeable Concretes for Overlay (오버레이용 투수성 콘크리트의 개발에 관한 연구)

  • 은재기;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.223-226
    • /
    • 1999
  • The purpose of this study is no examine the combination effect on strength preperties of water-permeable concretes mixed with redispersible polymer, silica fume and polypropylene fibers for overlay in pavement. The water-permeable concrete with a water-cement ration of 25%, polymer-cement ratios of 0 to 10%, silica fume contents of 0 to 10% and polypropylene fiver contents of 0 to 1.5% are prepared, and tested for flexural strength, compressive strength and water permeability. It is concluded concretes are obtained at a polypropylene fiber content of 1.0% and a silica fume content of 10% with a void filling ratio of 50%. And the water-permeable concretes with a flexural strength of 14.1~28.0kgf/$\textrm{cm}^2$, a compressive strength of 71.2~128.0kgf/$\textrm{cm}^2$, and a coefficient of permeability of 1.22~2.52cm/s at a void filling ratio of 30% can be prepared. Also water-permeable concretes having flexural strength of 24.9~57.9kgf/$\textrm{cm}^2$, a compressive strength of 83.8~268.5kgf/$\textrm{cm}^2$, and a coefficient of permeability of 0.24~1.04cm/s at a void filling ratio of 50% can be prepared in the consideration of the mix proportioning factors.

  • PDF

Experimental analysis and modeling of steel fiber reinforced SCC using central composite design

  • Kandasamy, S.;Akila, P.
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.215-229
    • /
    • 2015
  • The emerging technology of self compacting concrete, fiber reinforcement together reduces vibration and substitute conventional reinforcement which help in improving the economic efficiency of the construction. The objective of this work is to find the regression model to determine the response surface of mix proportioning Steel Fiber Reinforced Self Compacting Concrete (SFSCC) using statistical investigation. A total of 30 mixtures were designed and analyzed based on Design of Experiment (DOE). The fresh properties of SCC and mechanical properties of concrete were studied using Response Surface Methodology (RSM). The results were analyzed by limited proportion of fly ash, fiber, volume combination ratio of two steel fibers with aspect ratio of 50/35: 60/30 and super plasticizer (SP) dosage. The center composite designs (CCD) have selected to produce the response in quadratic equation. The model responses included in the primary stage were flowing ability, filling ability, passing ability and segregation index whereas in harden stage of concrete, compressive strength, split tensile strength and flexural strength at 28 days were tested. In this paper, the regression model and the response surface plots have been discussed, and optimal results were found for all the responses.

Concrete properties prediction based on database

  • Chen, Bin;Mao, Qian;Gao, Jingquan;Hu, Zhaoyuan
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.343-356
    • /
    • 2015
  • 1078 sets of mixtures in total that include fly ash, slag, and/or silica fume have been collected for prediction on concrete properties. A new database platform (Compos) has been developed, by which the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP ANNs) programs have been applied respectively to identify correlations between the concrete properties (strength, workability, and durability) and the dosage and/or quality of raw materials'. The results showed obvious nonlinear relations so that forecasting by using nonlinear method has clearly higher accuracy than using linear method. The forecasting accuracy rises along with the increasing of age and the prediction on cubic compressive strength have the best results, because the minimum average relative error (MARE) for 60-day cubic compressive strength was less than 8%. The precision for forecasting of concrete workability takes the second place in which the MARE is less than 15%. Forecasting on concrete durability has the lowest accuracy as its MARE has even reached 30%. These conclusions have been certified in a ready-mixed concrete plant that the synthesized MARE of 7-day/28-day strength and initial slump is less than 8%. The parameters of BP ANNs and its conformation have been discussed as well in this study.

Optimum Mix Design for Waste Newsprint Paper Fiber Reinforced Cement Composites (폐지섬유보강 시멘트 복합체의 최적배합비 도출)

  • 원종필;배동인;박찬기;박종영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.346-353
    • /
    • 2001
  • This research investigates the mixture proportioning of waste newsprint paper fiber for thin-cement product. Waste newsprint paper fibers obtained through shredded mechanically by a dry process. Waste newsprint paper fiber reinforced cement composites was manufacted by slurry-dewatering method. The waste newsprint paper fiber reinforcement conditions (fiber mass fraction, level of substitution of virgin fibers, level of fiber beating) and processing variables (pressed, unpressed) are optimized through experimental studies and statistical analyses based on factorial design of experiments and analyses of variance. The optimized recycled waste newsprint paper fiber reinforced cement composites were technically evaluated. The results are shown to possess acceptable properties and strong potentials of the recycling of waste newsprint paper of the reinforcement of thin-cement products.