• Title/Summary/Keyword: Mix design

Search Result 927, Processing Time 0.025 seconds

Evaluation of Mix Design for Asphalt Mixtures by Bailey Method (Bailey Method를 이용한 아스팔트 혼합물 최적배합설계 평가)

  • Lee, Dong-Hang;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4832-4836
    • /
    • 2012
  • In general, there are needed lots of time and experiments for determination of optimum asphalt content and mix design. The experimental results are highly depended on the skill of testers. Bailey suggested the proper aggregate gradation of hot mix asphalt are a function of special size and passing percent of the specified aggregate to reduce the test errors. In this paper, the asphalt mix designs of 19mm dense graded mix and PA-20mm for FHWA were carried out, using Bailey's method. The use of Bailey method can cut down the testing times to get the proper aggregate gradation for asphalt mix design. In case of 19mm dense graded asphalt mixture, the measured values of CA, $FA_c$, $FA_f$ are 0.724, 0.440, and 0.455, which are within the suggested values by Bailey. Also, in case of PA-20 graded asphalt mixture, the measured values of CA, $FA_c$, $FA_f$ are 0.646, 0.476, and 0.450, respectively.

Performance Evaluation of 100 % RAP Asphalt Mixtures using different types of Rapid-Setting Polymer-Modified Asphalt Emulsion for Spray Injection Application (속경성 바인더 유형에 따른 긴급보수용 스프레이 패칭 상온 재활용 아스팔트 혼합물(RAP)의 성능 평가)

  • Kim, Doo Yeol;Jeon, Ji Seong;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • PURPOSES : The purpose of this study was to determine the optimum mix design of the content of 100 % reclaimed asphalt pavement (RAP) for spray injection application with different binder types. METHODS : Literature review revealed that spray injection method is the one of the efficient and economical methods for repairing a small defective area on an asphalt pavement. The Rapid-Setting Polymer modified asphalt mixtures using two types of rapid setting polymers-asphalt emulsion and a quick setting polymer asphalt emulsion-were subjected to the following tests to determine optimum mix designs and for performance comparison: 1) Marshall stability test, 2) Retained stability test, 3) Wet track abrasion test, and 4) Dynamic stability test. RESULTS and CONCLUSIONS : Type A, B, and C emulsions were tested with different mix designs using RAP aggregates, to compare the performances and determine the optimum mix design. Performance of mixtures with Type A emulsion exceeded that of mixtures with Type B and C emulsion in all aspects. In particular, Type A binder demonstrated the highest performance for WTAT at low temperature. It demonstrated the practicality of using Type A mixture during the cold season. Furthers studies are to be performed to verify the optimum mix design for machine application. Differences in optimum mix designs for machine application and lab application will be corrected through field tests.

A Study on the Optimum Mix Proportion of the Stabilizing Liquid Used for Excavation of the Deep and Massive Slurry Wall

  • Kwon Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.151-159
    • /
    • 2002
  • This study investigates experimentally the optimum mix proportion and design factors of the stabilizing liquid used for excavation of the massive and deep slurry wall in LNG in-ground tank before pouring concrete. Considering those site conditions, the stabilizing liquid used for excavation of slurry wall has to be satisfied with some requirements including specific gravity, fluid loss, cake thickness, funnel viscosity and sand content in order to construct the safe and qualified slurry wall. For this purpose, we select materials including bentonite, polymer and dispersion agent. After performing many tests for materials and mix design process, we propose the optimum mix proportion that the upper limit ratio of bentonite is $2.0\%$, polymer is $0.1\%$ considering the funnel viscosity and dispersion agent is $0.05\%$considering the fluid loss of the stabilizing liquid. Also, we select all materials which are consisted of GTC4 as bentonite, KSTP as polymer and Bentocryl 86 as dispersion agent. Based on the results of this study, the optimum mix proportion of the stabilizing liquid is applicable to excavate the deep and massive slurry wall in LNG in-ground tank successfully.

  • PDF

Self-compacting light-weight concrete; mix design and proportions

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.143-161
    • /
    • 2016
  • Utilization of mineral and chemical admixtures in concrete technology has led to changes in the formulation and mix design in recent decades, which has, in turn, made the concrete stronger and more durable. Lightweight concrete is an excellent solution in terms of decreasing the dead load of the structure, while self-compacting concrete eases the pouring and removes the construction problems. Combining the advantages of lightweight concrete and self-compacting concrete is a new and interesting research topic. Considering its light weight of structure and ease of placement, self-compacting lightweight concrete may be the answer to the increasing construction requirements of slender and more heavily reinforced structural elements. Twenty one laboratory experimental investigations published on the mix proportion, density and mechanical properties of lightweight self-compacting concrete from the last 12 years are analyzed in this study. The collected information is used to investigate the mix proportions including the chemical and mineral admixtures, light weight and normal weight aggregates, fillers, cement and water. Analyzed results are presented in terms of statistical expressions. It is very helpful for future research to choose the proper components with different ratios and curing conditions to attain the desired concrete grade according to the planned application.

Sustainable concrete mix design for a target strength and service life

  • Tapali, Julia G.;Demis, Sotiris;Papadakis, Vagelis G.
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.755-774
    • /
    • 2013
  • Considering the well known environmental issues of cement manufacturing (direct and indirect levels of $CO_2$ emissions), clinker replacement by supplementary cementing materials (SCM) can be a very promising first step in reducing considerably the associated emissions. However, such a reduction is possible up to a particular level of SCM utilization, influenced by the rate of its pozzolanic reaction. In this study a (4-step) structured methodology is proposed in order to be able to further adjust the concrete mix design of a particular SCM, in achieving additional reduction of the associated levels of $CO_2$ emissions and being at the same time accepted from a derived concrete strength and service life point of view. On this note, the aim of this study is twofold. To evaluate the environmental contribution of each concrete component and to provide the best possible mix design configuration, balanced between the principles of sustainability (low environmental cost) and durability (accepted concrete strength and service life ). It is shown that such a balance can be achieved, by utilising SCM by-products in the concrete mix, reducing in this way the fixed environmental emissions without compromising the long-term safety and durability of the structure.

The self-compacting property of concrete as to specific gravity and mixing proportion of lightweight coarse aggregate (경량 굵은골재 비중 및 혼합률에 따른 콘크리트의 자기충전성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook;Lee, Sang-Ho;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied. to . structures such as long-span bridge and high rise buildings. However, the lightweight concrete requires specific design mix method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the design mix method of high performance self-compacting concrete for the lightweight concrete. Therefore, this study introduces a production of self-compacting concrete, PF-modified and improved version of Nan-Su's design mix method of self-compacting concrete. Through a series of test mixes conducted during the study, the quality of the concrete at its fresh condition has been evaluated per the 2nd class rating standards of self-compacting concrete published by JSCE, especially focused in its fluidity, segregation resistance ability, and filling ability.

  • PDF

A Study on the Properties of Self-Compacting Concrete Using Ground Calcium Carbonate (중탄산칼슘을 이용한 자기충전형 콘크리트의 특성에 관한 연구)

  • 최연왕;정문영;임흥빈;황윤태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.73-78
    • /
    • 2002
  • This study examines self-compacting of concrete using Ground Calcium Carbonate(GCC) gathering in limestone mine of Banyans district in order to make self-compacting concrete in the range of design strength 300kgf/cm$^2$ and the optimal mix proportion of self-compacting concrete that can use in field structure. The result shows that the optimal GCC replacement ratio is 45$\pm$5% in the normal strength of design strength 300kgf/cm$^2$ and that the volume ratio of the optimal fine aggregate used as the way satisfying both viscosity and compacting ability without separating materials is 46%. The optimal volume ratio of the coarse aggregate considering the economical aspect of concrete is 50%. It is desirable that the optimal mix proportion satisfying self-compacting for replacement of GCC is decided through mix design according to each replacement ratio.

  • PDF

Experimental Study on the Mix Design Method using the Fracture Energy and the other Parameters in Concrete. (콘크리트의 파괴에너지와 다른 재료특성을 이용한 배합설계법에 관한 실험연구)

  • 강성후
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.4
    • /
    • pp.149-160
    • /
    • 1992
  • 콘크리트 압축강도가 설계의 규준이 될 경우 배합비를 결정하는 방법은 여러 가지가 있으나, 파괴에너지 및 탄성계수와 같은 규준이 주어질 경우 배합비 결정에 적용하는 방법은 거의 없다. 이를 위하여 본 연구는 콘크리트 재료성질의 관계에 관한 배합설계도(Mix design diagram)를 제안하였다. 이 방법은 시멘트량, 물-시멘트 비가 콘크리트의 압축강도, 탄성계수, 할렬인장강도, 파괴에너지 그리고 콘크리트 특성길이(Characteristic length)에 주는 영향을 실험에 의하여 규명하였다. 시편제작을 위하여 각기 다른 물-시멘트비와 워커빌리티를 갖는 6종류의 무근콘크리트 배합이 사용되었다.

An Experimental Study on the Properties of Early-Strength for high performance Concrete according to Mix Design (배합설계 조건에 따른 고성능 콘크리트의 조기강도 발현특성에 관한 연구)

  • Choi, Sumg-Woo;Yoo, Jong-Su;Beak, Chul-Woo;Kim, Jeong-Sik;Ryu, Deung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.231-232
    • /
    • 2009
  • In this study, the properties of early strength development for high performance concrete according to mix design were examined In particulara, we examined the mineral addmixture influence for mix design.

  • PDF

An Experimental Study on the Improvement of Durability for the Foundation Concrete under Cold Weather Condition (혹한지역 기초 콘크리트의 내구성 향상을 위한 실험 연구)

  • 우상균;송영철;김경민;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.645-650
    • /
    • 2003
  • The purpose of this study is to provide the optimum mix design of cold weather concrete to be placed at the foundation structures in substation. The basic performance tests including slump and slump flow, air content, compressive strength and freezing & thawing resistance were conducted for cold weather concrete by varying with W/C ratios such as 40%, 50% and 60% and air contents such as 3%, 4%, 5% and 6%. The effect on durability of concrete corresponding to the increasing amount of air content and W/C ratio was evaluated and the optimum mix design was recommended. From this study, the concrete mix design containing 6% of air content and 45% of W/C ratio is recommended for the foundation concrete of substation.

  • PDF