• Title/Summary/Keyword: Mix Proportions

Search Result 283, Processing Time 0.022 seconds

Concrete mix design for service life of RC structures exposed to chloride attack

  • Kwon, Seung-Jun;Kim, Sang-Chel
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.587-607
    • /
    • 2012
  • The purpose of this research is to propose a design technique of concrete mix proportions satisfying service life through genetic algorithm (GA) and neural network (NN). For this, thirty mix proportions and the related diffusion coefficients in high performance concrete are analyzed and fitness function for diffusion coefficient is obtained considering mix components like w/b (water to binder ratio), cement content, mineral admixture (slag, flay ash and silica fume) content, sand and coarse aggregate content. Through averaging the results of 10 times GA simulations, relative errors to the previous data decrease lower than 5.0% and the simulated mix proportions are verified with the experimental results. Assuming the durability design parameters, intended diffusion coefficient for intended service life is derived and mix proportions satisfying the service life are obtained. Among the mix proportions, the most optimized case which satisfies required concrete strength and the lowest cost is selected through GA algorithm. The proposed technique would be improved with the enhancement of comprehensive data set including wider the range of diffusion coefficients.

Tensile Properties of GFRP Rebars Based on Resin Mix Proportions (수지배합에 따른 GFRP 보강근의 인장 특성)

  • Park, Ji-Sun;You, Young-Chan;Park, Young-Hwan;You, Young-Jun;Kim, Hyeong-Yeol;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.561-564
    • /
    • 2006
  • The tensile characteristics of four types GFRP (glass fiber reinforced polymer) reinforcing bars with different resin mix proportions and fiber volume fraction were analyzed experimentally. Four types of GFRP reinforcing bars containing approximately 66 or 70% fiber volume fraction with A or B rein mix proportions were considered in this test. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the recommendations of CSA Standard S806-02. From the test results, it was found that GFRP reinforcing bars containing approximately 70% fiber volume fraction with A rein mix proportion showed the higher tensile strength than that of the others due to the higher fiber volume fraction and proper resin mix proportion.

  • PDF

Study on the Optimal Mix Proportions of Lightweight Foam Concrete for Substitution of ALC (ALC 대체를 위한 선발포 경량기포콘크리트의 최적배합 선정 연구)

  • Choi, Sun-Mi;Kim, Beom-Soo;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.199-200
    • /
    • 2023
  • This paper presents a study on the selection of optimal mix proportions for producing lightweight pre-foam concrete as a substitute for Autoclaved Lightweight Concrete (ALC) without the accelerated curing. The study was conducted using a rapid hardening binder made from by-products of the steel industry as the primary raw material. The experimental results established the optimal mix proportions, which included retarder content, water/binder ratio, foam content, and fiber inclusion amount, for the production of lightweight foam concrete. The optimal mix proportion was determined to have a retarder content at the minimum amount required to secure the working time, W/B of 35%, a foam content limited to 65% or less, and a fiber inclusion amount of 0.05% or less.

  • PDF

Optimum Mix Design of Concrete (콘크리트 용도별 최적배합을 위한 연구)

  • 이병덕;양우석;안태성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.209-214
    • /
    • 1999
  • Strength provisions in Korea Concrete Institute code are more conservative that those in ACI code by increasing load factors and decreasing capacity reduction factors. Cement content of mix design in construction field is usually higher than the modified for standard deviation because of rigorous inspection. Higher cement content increases not only strengths but also heat of hydration, shrinkage and brittleness which are not beneficial. To reduce and optimize the cement content in current mix design of Korean Highway Corporation, properties of fresh and hardened concrete for 16 different mix proportions have been investigated. It is found that the chemical admixture and cement of current mix proportions for highway construction are somewhat higher than the optimum amount. Therefore, the optimum mix design for 16 different purposes has been proposed.

  • PDF

Determination of Mix Proportions in Strength Properties of High Performance Shotcrete using Fly Ash (폐석탄회를 이용한 고성능 숏콘크리트의 강도특성에 따른 적정배합비 도출)

  • Park, Chul-Woo;Sim, Jong-Sung;Jung, Woo-Young;Kang, Tae-Sung;Lee, Hyeon-Gi;Kim, Jong-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.369-370
    • /
    • 2009
  • This study aims to find an optimum mix proportions for high-performance shotcrete using industrial by-product from power plants. Compressive strengths of various mix proportions with varying amount of fly ash were verified if they meet the required limits.

  • PDF

A Study on the Mechanical Properties and Permeability of Permeable Polymer Concrete Covered with Polymer Mortar as a Filter (폴리머 모르터를 필터로 사용한 투수성 폴리머 콘크리트의 역학적 성질과)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.237-242
    • /
    • 1998
  • Covering mortar as a filter for permeable polymer concrete is necessary for good permeability from filtration continuously. Therefore, this paper is intended as an evaluation of the mechanical properties and permeability of permeable polymer concrete covered with polymer mortar as a filter. An optimum permeable polymer concrete is selected in various mix proportions, and three different polymer mortars were cast immediately following on the casting of the base permeable polymer concrete. And they are tested for compressive and flexural strengths, adhesion in tension, hardening shrinkage and permeability . From the test results, binder and filler contents in mix proportions had a great influence on the permeability of polymer concretes. The mechanical properties of permeable polymer concretes covered with polymer mortars using crushed stone are superior to other filters, and hardening shrinkage is the smallest in filters. It is apparent that adhesion between the base permeable polymer concrete and polymer mortar is affected by the degree of hardening shrinkage. From this study, proper mix proportions can be recommended in the consideration of properties of the permeable polymer concrete.

  • PDF

Basic Mix Proportions of Antiwashout Underwater Polymer Cement Mortar as a Repair Material (보수재료로서 수중불분리 폴리머 시멘트 모르타르의 기초적 배합)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.193-194
    • /
    • 2019
  • The purpose of this study is to design the basic mix proportions of antiwashout underwater polymer cement mortar as a repair material. The antiwashout underwater polymer cement mortars are prepared with various mix proportions using three type polymer dispersions without or with antifoamer. From the test results, the whole antiwashout underwater polymer cement mortars can be cast underwater without segregation like plain mortar. It is apparent that the flexural strength of antiwashout underwater SBR cement mortars with antifoamer at polymer- cement ratios of 5% and 10% is higher than that of plain mortar irregardless of a little low compressive strength.

  • PDF

Optimum Mix Proportion and Mechanical Properties of Rain Garden Structure Concrete using Recycled Coarse Aggregate, Hwang-Toh, Blast Furnace Slag and Jute Fiber (순환굵은골재, 황토, 고로슬래그 미분말 및 마섬유를 사용한 레인가든 구조물 콘크리트의 최적배합설계 및 역학적 특성)

  • Kim, Dong-Hyun;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.25-33
    • /
    • 2013
  • In this study, the optimum mix proportions of rain garden structure concrete were decided and the mechanical properties were evaluated. Experimental parameters were blast furnace slag, hwang-toh, recycled aggregates and natural jute fibers. The target compressive strength and chloride ion penetration were more than 24 MPa and less than 1000 coulombs, respectively. The response surface method was used for statistical optimization of experimental results. The optimal mixing ratios of the blast furnace slag, hwang-toh, recycled coarse aggregate and jute fiber volume fraction were determined 59.98 %, 8.74 %, 12.12 % and 0.2 %, respectively. The compressive strength, flexural strength and chloride ion penetration test results of optimum mix ratio showed that the 24.56 MPa, 3.88 MPa and 999.08 columbs, respectively.

Mix Proportions of Concrete for Roller Compacted Concrete Dam Application (롤러다짐 댐 콘크리트의 효율적인 배합비 도출에 관한 연구)

  • Won, Jong-Pil;Yoon, Jong-Hwan;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • Roller-compacted concrete(RCC) dam have gained acceptance worldwide in a relatively short time due to their low cost, which is derived in part from their rapid method of construction. And RCC has recently emerged as an economically attractive material for dam construction, replacing the use of conventional concrete and even challenging the economics of earthfill and rockfill embankment dams. There are existing two major mix design methods. one used in USA and the other used in Japan. In this study, proper mix proportions of concrete for RCC dam is obtained using method of compound their merit.

Mix Proportions of Early-Strength Pavement Concrete Using Calcium Nitrate (질산칼슘 혼화재를 사용한 신속개방형 포장 콘크리트의 적정배합비 도출)

  • Won, Jong Pil;Lee, Si Won;Lee, Sang Woo;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.95-100
    • /
    • 2009
  • This study proposed mix proportions of early strength pavement concrete for large size area using calcium nitrate. Therefore, we used type III cement with calcium nitrate. Laboratory tests conducted to air content, slump loss test, setting time test, compressive strength test and flexural strength test. Our early strength pavement concrete mixture proportion proposed in this study for large size area attained the required compressive strength of 21 MPa and a flexural strength of 3.8 MPa, which allowed it to be opened to traffic within 8 hours. Based on test results, we suggested optimum mix proportions of early strength pavement concrete for large size area using calcium nitrate.