• Title/Summary/Keyword: Mitogenome

Search Result 26, Processing Time 0.021 seconds

Complete Mitochondrial Genome of Martes flavigula (Carnivora: Mustelidae) and Its Phylogenetic Status in the Genus Martes

  • Han-Na Kim;Yeong-Seok Jo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.40 no.2
    • /
    • pp.147-149
    • /
    • 2024
  • We report the complete mitochondrial genome sequence of endangered yellow-throated marten, Martes flavigula. The complete mitochondrial genome of M. flavigula is 16,555 bp in length. We identified 13 protein coding genes, 22 transfer RNA, two ribosomal RNA, and one control region. The mitogenome is A+T rich, with a composition of 31.3% A, 28.7% C, 13.0% G, and 27.0% T. According to phylogenetic analysis based on mitochondrial complete genomes, Martes flavigula in the subgenus Charronia was clearly distinct from the subgenus Martes. This phylogeny of the genus Martes supports the conventional systematic treatment. The genetic and taxonomic analysis in this study provides necessary information for the future studies of yellow-throated marten and the Mustelidae family.

The Complete Mitochondrial Genome of the Fourhorn Sculpin Triglopsis quadricornis (Perciformes, Cottidae) from Sirius Passet, North Greenland

  • Kim, Bo-Mi;Kihm, Ji-Hoon;Park, Tae-Yoon S.
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.371-374
    • /
    • 2021
  • Triglopsis quadricornis Linnaeus, 1758 (Cottidae) is distributed in the Atlantic and Arctic and has four unique bony protuberances on its head. Here, we report the complete, circular, and annotated mitochondrial genome of T. quadricornis. The complete T. quadricornis mitochondrion was sequenced by high-throughput Illumina HiSeq platform. The sequences are 16,736 bp in size and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, a control region, and large and small ribosomal subunits. The overall genomic structure of T. quadricornis mitochondrion was conserved with the gene arrangement of Megalocottus and Myoxocephalus species, and phylogenetic analysis supports their sister relationships. Most PCGs consist of TAA or TAG as a termination codon, whereas COII, ND4, and CYTB have T-- as a stop codon. This complete mitochondrial DNA information of T. quadricornis will provide an essential genomic resource to elucidate the phylogenetic relationship and evolutionary history of the family Cottidae.

Characterization of six new complete mitochondrial genomes of Chiasmodontidae (Scombriformes, Percomorpha) and considerations about the phylogenetic relationships of the family

  • Igor Henrique Rodrigues-Oliveira;Rubens Pasa;Fabiano Bezerra Menegidio;Karine Frehner Kavalco
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.10.1-10.6
    • /
    • 2023
  • The fishes of the Chiasmodontidae family, known as swallower fishes, are species adapted to live in deep seas. Several studies have shown the proximity of this family to Tetragonuridae and Amarsipidae. However, the phylogenetic position of this clade related to other Pelagiaria groups remains uncertain even when phylogenomic studies are employed. Since the low number of published mitogenomes, our study aimed to assemble six new mitochondrial genomes of Chiasmodontidae from database libraries to expand the discussion regarding the phylogeny of this group within Scombriformes. As expected, the composition and organization of mitogenomes were stable among the analyzed species, although we detected repetitive sequences in the D-loop of species of the genus Kali not seen in Chiasmodon, Dysalotus, and Pseudoscopelus. Our phylogeny incorporating 51 mitogenomes from several families of Scombriformes, including nine chiasmodontids, recovered interfamilial relationships well established in previous studies, including a clade containing Chiasmodontidae, Amarsipidae, and Tetragonuridae. However, phylogenetic relationships between larger clades remain unclear, with disagreements between different phylogenomic studies. We argue that such inconsistencies are not only due to biases and limitations in the data but mainly to complex biological events in the adaptive irradiation of Scombriformes after the Cretaceous-Paleogene extinction event.

Complete Mitochondrial Genome of the Chagas Disease Vector, Triatoma rubrofasciata

  • Dong, Li;Ma, Xiaoling;Wang, Mengfei;Zhu, Dan;Feng, Yuebiao;Zhang, Yi;Wang, Jingwen
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.5
    • /
    • pp.515-519
    • /
    • 2018
  • Triatoma rubrofasciata is a wide-spread vector of Chagas disease in Americas. In this study, we completed the mitochondrial genome sequencing of T. rubrofasciata. The total length of T. rubrofasciata mitochondrial genome was 17,150 bp with the base composition of 40.4% A, 11.6% G, 29.4% T and 18.6% C. It included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and one control region. We constructed a phylogenetic tree on the 13 protein-coding genes of T. rubrofasciata and other 13 closely related species to show their phylogenic relationship. The determination of T. rubrofasciata mitogenome would play an important role in understanding the genetic diversity and evolution of triatomine bugs.

Complete mitochondrial genome of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae), from Jeju Island, Korea

  • Kim, Kee-Young;Park, Jeong Sun;Lee, Keon Hee;Kim, Min Jee;Kim, Seong-Wan;Park, Jong-Woo;Kang, Sang-Kuk;Kim, Nam-Suk;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.44 no.2
    • /
    • pp.65-71
    • /
    • 2022
  • The wild silkmoth Antheraea yamamai Guérin-Méneville, 1861 (Lepidoptera: Saturniidae) is an important producer of silk that is superior to the silk produced by traditional domesticated silkworm. In this study, we sequenced the complete mitochondrial genome (mitogenome) of An. yamamai collected from Jeju Island, which is the southernmost island approximately 100 km offshore southward from the Korean Peninsula. Determining this sequence will be necessary for tracing the biogeographic history of the species and developing molecular markers for identifying the origin of commercial products. Comparison of the sequence divergence among two available and the current mitogenomes revealed a low but substantial number of substitutions, totaling 23 nucleotides in the whole genome. CytB and ND5 showed the highest variability with five and four variations, respectively, suggesting that these regions will be prior regions to target for subsequent biogeographic and diagnosis study. Phylogenetic reconstruction based on all available sequences of Saturniidae showed that An. yamamai is a sister to the congeneric species An. pernyi, corroborating that Antheraea is a highly supported monophyletic group. The tribe Saturniini was clearly non-monophyletic and interrupted by Attacini and Bunaeini.

Comparative mitogenomics of Pleurotus ostreatus Gonji7ho and its cap color mutant

  • Oh, Min-Ji;Na, Kyeong Sook;Jung, Hwa Jin;Lee, Young Kuk;Ryu, Jae-San
    • Journal of Mushroom
    • /
    • v.20 no.2
    • /
    • pp.43-49
    • /
    • 2022
  • Pleurotus ostreatus is a globally cultivated mushroom crop. Cap color is a quality factor in P. ostreatus. However, cap color can spontaneously mutate, degrading the quality of the mushroom on the market. Early detection and removal of mutant strains is the best way to maintain the commercial value of the crop. To detect the cap color mutant Gonji7ho, molecular markers were developed based on insertion/deletions (InDels) derived from the comparison of mitogenomes of Gonji7ho and Gonji7hoM mushrooms. Sequencing, assembly, and comparative analysis of the two mitogenomes revealed genome sizes of 73,212 bp and 72,576 bp with 61 and 57 genes or open reading frames (ORFs) in P. ostreatus Gonji7ho and Gonji7hoM, respectively. Fourteen core protein-encoding genes, two rRNA, and 24 tRNA with some OFRs were predicted. Of the 61 genes or OFRs in the wild type, dpo, rpo, and two orf139 were missing (or remnant) in the mutant strain. Molecular markers were developed based on the sequence variations (InDels) between the two mitogenomes. Six polymorphic molecular markers could detect the mutated mitochondria by PCR. These results provide basic knowledge of the mitogenomes of wild-type and mutant P. ostreatus, and can be applied to discriminate mutated mitochondria.