• Title/Summary/Keyword: Mitogen activated protein kinase

Search Result 793, Processing Time 0.029 seconds

Ligand-Independent Activation of the Androgen Receptor by Insulin-Like Growth Factor-I and the Role of the MAPK Pathway in Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.589-593
    • /
    • 2009
  • In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.

Protective Effects of Natural Phytochemicals on the Lipid Peroxides Induced Apoptosis in the Human Endothelial ECV 304 Cells

  • Kim, Ae-Jung;Kim, Mae-Wha;Kang, Young-Hee;Lee, Myoung-Sook
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.436-441
    • /
    • 2009
  • The final bio-metabolites of lipid peroxidation (LPO) such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) have been suggested to mediate the oxidative stress-linked pathological incidences. Natural phytochemicals such as polyphenolic compounds in green tea have been known in preventing the LPO induced cellular growth inhibition and apoptosis. We investigated that green tea ethanol extracts (GTE) inhibit LPO-induced apoptosis in ECV 304 cells. GTE had time- or dose-dependent anti-apoptotic effects as evidenced by changes in cell morphology, MTT assay, DNA fragmentation, LPO production, and the Western blotting for apoptotic expression. In the 4-HNE-induced apoptosis model, GTE $10-20{\mu}g/mL$ decreased cell death through decreasing LPO production. GTE protected 4-HNE induced apoptosis, as evidence with down regulation of mitochondrial signaling such as cytochrome C and caspase-3 activity. GTE increased bcl2, survival signaling protein, compared to 4-HNE alone within 6 hr incubation. Since polyphenols in GTE are effective antioxidants in endothelial ECV 304 cells, we suggested that natural polyphenols might be anti-atherosclerotic.

Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction

  • Do, Moon Ho;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John's Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.

Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation

  • Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive ($TRAP^+$) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar ($H^+$) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.

Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways

  • Han, Xia;Kang, Kyoung Ah;Piao, Mei Jing;Zhen, Ao Xuan;Hyun, Yu Jae;Kim, Hyun Min;Ryu, Yea Seong;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.41-47
    • /
    • 2019
  • The apoptotic effects of shikonin (5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-enyl]naphthalene-1,4-dione) on the human colon cancer cell line SNU-407 were investigated in this study. Shikonin showed dose-dependent cytotoxic activity against SNU-407 cells, with an estimated $IC_{50}$ value of $3{\mu}M$ after 48 h of treatment. Shikonin induced apoptosis, as evidenced by apoptotic body formation, sub-G_1$ phase cells, and DNA fragmentation. Shikonin induced apoptotic cell death by activating mitogen-activated protein kinase family members, and the apoptotic process was mediated by the activation of endoplasmic reticulum (ER) stress, leading to activation of the $PERK/elF2{\alpha}/CHOP$ apoptotic pathway, and mitochondrial $Ca^{2+}$ accumulation. Shikonin increased mitochondrial membrane depolarization and altered the levels of apoptosis-related proteins, with a decrease in B cell lymphoma (Bcl)-2 and an increase in Bcl-2-associated X protein, and subsequently, increased expression of cleaved forms of caspase-9 and -3. Taken together, we suggest that these mechanisms, including MAPK signaling and the ER- and mitochondria-mediated pathways, may underlie shikonin-induced apoptosis related to its anticancer effect.

Anti-proliferative Effect of a Novel Anti-oxidative Peptide in Hanwoo Beef on Human Colorectal Carcinoma Cells

  • Kim, Hye-Jin;Yang, Se-Ran;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1168-1178
    • /
    • 2018
  • The present study aimed to characterise anti-oxidant peptides from water-soluble protein extracts of Hanwoo beef and evaluate their anti-proliferative effect on human colorectal carcinoma cells (HCT116). Antioxidant peptides were purified from the low-molecular-weight fraction (<3 kDa) of Hanwoo beef extract. Antioxidant activity of peptide fractions was determined using the oxygen radical absorbance capacity (ORAC) assay. Purified peptide (P3) displayed higher ORAC activity than the low-molecular-weight fraction ($202.66{\mu}M\;TE/g$ vs $167.38{\mu}M\;TE/g$ of dry matter, respectively) (p<0.05). The peptide sequence of P3 was Cys-Cys-Cys-Cys-Ser-Val-Gln-Lys (888.30 Da). The novel peptide P3, at $250{\mu}g/mL$, also significantly inhibited HCT116 cell proliferation up to 25.24% through phosphorylation of ERK, JNK, and p38 kinase (p<0.05). Hence, antioxidant peptide P3 from Hanwoo beef extract can be used as an antioxidative and anticancer agent in the functional food industry.

Protective effects of Hizikia fusiforme and Chlorella sp. extracts against lead acetate-induced hepatotoxicity in rats

  • Park, Joo hyun;Choi, Jeong-Wook;Lee, Min-Kyeong;Choi, Youn Hee;Nam, Taek-Jeong
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.1
    • /
    • pp.2.1-2.9
    • /
    • 2019
  • In the present study, the protective effects of Hizikia fusiforme and Chlorella sp. extracts on lead acetate-induced hepatotoxicity were investigated. Hepatic damage was induced in rats by intraperitoneal (i.p.) injection of lead acetate and the protective effects of H. fusiforme (HZK) and Chlorella sp. (CHL) extracts on lead acetate-induced hepatic damage in rat liver were examined. The results revealed significantly increased glutamic oxaloacetate and glutamic pyruvic transaminase levels in the group treated with lead acetate only (Pb group); oral administration of HZK and CHL extracts tended to decrease the enzyme levels similar to those observed in the control group. Regarding antioxidant enzymes, superoxide dismutase activity was increased in the Pb group and decreased in a concentration-dependent manner in the HZK- and CHL-treated groups. Glutathione levels were increased in a concentration-dependent manner in the HZK- and CHL-treated groups. There was no significant difference in catalase activity. Western blot analysis showed inflammation-related protein expression in mitogen-activated protein kinase and Nrf2 pathways was affected in the HZK- and CHL-treated groups. Therefore, HZK and CHL extracts exerted antioxidant and anti-inflammatory effects against lead acetate-induced hepatotoxicity. Development of functional health foods containing HZK and CHL extracts, which have hepatoprotective effects against inhaled lead acetate, should be considered.

5-bromoprotocatechualdehyde suppresses growth of human lung cancer cells through modulation of ROS and the AKT/MAPK signaling pathway

  • Jusnseong Kim;Eun-A Kim;Nalae Kang;Seong-Yeong Heo;Soo-Jin Heo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.49-58
    • /
    • 2023
  • Early-stage lung cancer is the deadliest form of the disease. In this study, we investigated the anticancer activity of 5-bromoprotocatechualdehyde (BPCA) extracted from the seaweed Polysiphonia morrowii Harvey (P. morrowii) in lung cancer H460 cells. We extracted P. morrowii powder thrice with 80% aqueous methanol and separated the extract using high-performance liquid chromatography. We then tested BPCA's effects on cell viability, apoptosis, reactive oxygen species (ROS) generation, and protein expression Our results showed that BPCA inhibited tumor cell growth and ROS production and induced apoptosis through mitogen-activated protein kinase (MAPK) and AKT signaling pathways in lung cancer cells. When BPCA was combined with hydrogen peroxide, ROS production and apoptosis increased even further due to the regulation of AKT signaling and JNK-MAPKs pathways. These findings suggest that BPCA induces lung-cancer-cell death through ROS-mediated phosphorylation in AKT/MAPK signaling. This could lead to the development of new and effective treatments for early-stage lung cancer.

Anti-Inflammatory Effects of Paraprobiotic Lactiplantibacillus plantarum KU15122 in LPS-Induced RAW 264.7 Cells

  • Hye-Won Lee;Hee-Su Jung;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1491-1500
    • /
    • 2024
  • Inflammation is a biodefense mechanism that provides protection against painful conditions such as inflammatory bowel disease, other gastrointestinal problems, and irritable bowel syndrome. Paraprobiotics have probiotic characteristics of intestinal modulation along with merits of safety and stability. In this study, heat-killed Lactiplantibacillus plantarum KU15122 (KU15122) was investigated for its anti-inflammatory properties. KU15122 was subjected to heat-killed treatment for enhancement of its safety, and its concentration was set at 8 log CFU/mL for conducting different experiments. Nitric oxide production was most remarkably reduced in the KU15122 group, whereas it was increased in the LPS-treated group. In RAW 264.7 cells, KU15122 inhibited the expression of inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. ELISA revealed that among the tested strains, KU15122 exhibited the most significant reduction in PGE2, IL-1β, and IL-6. Moreover, KU15122 inhibited various factors involved in the nuclear factor-kappa B, activator protein-1, and mitogen-activated protein kinase pathways. In addition, KU15122 reduced the generation of reactive oxygen species. The anti-inflammatory effect of KU15122 was likely attributable to the bacterial exopolysaccharides. Conclusively, KU15122 exhibits anti-inflammatory potential against inflammatory diseases.

Differential Gene Expression in GPR40-Overexpressing Pancreatic ${\beta}$-cells Treated with Linoleic Acid

  • Kim, In-Su;Yang, So-Young;Han, Joo-Hui;Jung, Sang-Hyuk;Park, Hyun-Soo;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.141-149
    • /
    • 2015
  • "G protein-coupled receptor 40" (GPR40), a receptor for long-chain fatty acids, mediates the stimulation of glucose-induced insulin secretion. We examined the profiles of differential gene expression in GPR40-activated cells treated with linoleic acid, and finally predicted the integral pathways of the cellular mechanism of GPR40-mediated insulinotropic effects. After constructing a GPR40-overexpressing stable cell line (RIN-40) from the rat pancreatic ${\beta}$-cell line RIN-5f, we determined the gene expression profiles of RIN-5f and RIN-40. In total, 1004 genes, the expression of which was altered at least twofold, were selected in RIN-5f versus RIN-40. Moreover, the differential genetic profiles were investigated in RIN-40 cells treated with $30{\mu}M$ linoleic acid, which resulted in selection of 93 genes in RIN-40 versus RIN-40 treated with linoleic acid. Based on the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG, http://www.genome.jp/kegg/), sets of genes induced differentially by treatment with linoleic acid in RIN-40 cells were found to be related to mitogen-activated protein (MAP) kinase- and neuroactive ligand-receptor interaction pathways. A gene ontology (GO) study revealed that more than 30% of the genes were associated with signal transduction and cell proliferation. Thus, this study elucidated a gene expression pattern relevant to the signal pathways that are regulated by GPR40 activation during the acute period. Together, these findings increase our mechanistic understanding of endogenous molecules associated with GPR40 function, and provide information useful for identification of a target for the management of type 2 diabetes mellitus.