• 제목/요약/키워드: Mitochondrial fragmentation

검색결과 142건 처리시간 0.03초

Mechanism Underlying NaF-Induced Apoptosis in Human Oral Squamous Cell Carcinoma

  • Hur, Young-Joo;Kim, Do-Kyun;Lee, Seung-Eun;Kim, In-Ryoung;Jeong, Na-Young;Kim, Ji-Young;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제35권2호
    • /
    • pp.51-60
    • /
    • 2010
  • Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor $p27^{KIP1}$. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.

Mechanism Underlying Curcumin-induced Apoptosis and Cell Cycle Arrest on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line

  • Moon, Jung-Bon;Lee, Kee-Hyun;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제39권1호
    • /
    • pp.23-33
    • /
    • 2014
  • Several studies have shown that curcumin, which is derived from the rhizomes of turmeric, possesses antimicrobial, antioxidant and anti-inflammatory properties. The antitumor properties of curcumin have also now been demonstrated more recently in different cancers. This study was undertaken to investigate the modulation of cell cycle-related proteins and the mechanisms underlying apoptosis induction by curcumin in the SCC25 human tongue squamous cell carcinoma cell line. Curcumin treatment of the SCC25 cells resulted in a time- and dose-dependent reduction in cell viability and cell growth, and onset of apoptotic cell death. The curcumin-treated SCC25 cells showed several types of apoptotic manifestations, such as nuclear condensation, DNA fragmentation, reduced MMP and proteasome activity, and a decreased DNA content. In addition, the treated SCC25 cells showed a release of cytochrome c into the cytosol, translocation of AIF and DFF40/CAD into the nuclei, a significant shift in the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-7, caspase-6, caspase-3, PARP, lamin A/C, and DFF45/ICAD. Furthermore, curcumin exposure resulted in a downregulation of G1 cell cycle-related proteins and upregulation of $p27^{KIP1}$. Taken together, our findings demonstrate that curcumin strongly inhibits cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via proteasomal, mitochondrial, and caspase cascades in SCC25 cells.

반지련의 Methyl chloride 분획이 U937 단핵 세포 암주의 세포고사에 미치는 영향 (Apoptotic effect of Me fraction of Scutellaria barbata in human leukemic U937 cells)

  • 차윤이;이은옥;이주령;강인철;박영두;안규석;김성훈
    • 동의생리병리학회지
    • /
    • 제17권3호
    • /
    • pp.629-632
    • /
    • 2003
  • Scutellaria barbata has been used as a traditional Chinese Herb for treating liver, lung and rectal tumors. In the present study, cytotoxic effect of Scutellaria barbata MC fradtion was investigated and it was found to inhibit proliferation of human leukemic U937 cells with an IC50 of approximately 10 μg/ml in a dose-dependent manner. We also demonstrated that Scutellaria barbata MC fraction caused apoptosis in U937 cells. In the flow cytometric assay, the MC fraction-treated U937 cells showed an increase in hypo-diplold Sub G1 DNA contents. DNA fragmentation was observed by TUNEL assay. An increase of Bax:Bcl-2 ratio, activation of caspase-9, caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP) were demonstrated by western blot analysis. Taken together, these results exerted that the MC fraction suppressed human leukemic U937 cell proliferation by inducing apoptosis via the mitochondrial pathway.

Fucodiphlorethol G Purified from Ecklonia cava Suppresses Ultraviolet B Radiation-Induced Oxidative Stress and Cellular Damage

  • Kim, Ki Cheon;Piao, Mei Jing;Zheng, Jian;Yao, Cheng Wen;Cha, Ji Won;Kumara, Madduma Hewage Susara Ruwan;Han, Xia;Kang, Hee Kyoung;Lee, Nam Ho;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.301-307
    • /
    • 2014
  • Fucodiphlorethol G (6'-[2,4-dihydroxy-6-(2,4,6-trihydroxyphenoxy)phenoxy]biphenyl-2,2',4,4',6-pentol) is a compound purified from Ecklonia cava, a brown alga that is widely distributed offshore of Jeju Island. This study investigated the protective effects of fucodiphlorethol G against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) irradiation. Fucodiphlorethol G attenuated the generation of 2, 2-diphenyl-1-picrylhydrazyl radicals and intracellular reactive oxygen species in response to UVB irradiation. Fucodiphlorethol G suppressed the inhibition of human keratinocyte growth by UVB irradiation. Additionally, the wavelength of light absorbed by fucodiphlorethol G was close to the UVB spectrum. Fucodiphlorethol G reduced UVB radiation-induced 8-isoprostane generation and DNA fragmentation in human keratinocytes. Moreover, fucodiphlorethol G reduced UVB radiation-induced loss of mitochondrial membrane potential, generation of apoptotic cells, and active caspase-9 expression. Taken together, fucodiphlorethol G protected human keratinocytes against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging reactive oxygen species.

H2O2로 유발된 C6 신경교세포 사멸에 대한 총명공진단의 보호 효과 (Protective Effects of Chongmyunggongjin-dan on H2O2-induced C6 Glial Cell Death)

  • 황규상;신용진
    • 대한한방내과학회지
    • /
    • 제41권1호
    • /
    • pp.44-58
    • /
    • 2020
  • Objectives: This study was conducted to identify the protective effects of Chongmyunggongjin-dan (CMGJD) on Hydrogen peroxide (H2O2)-induced apoptosis mechanisms in C6 glial cells. Method: We used CMGJD after distilled water extraction, filtration, and lyophilization. The ROS scavenging effect was examined by fluorescence microscopy. Expression levels of proteins related to ROS generation were investigated by western blotting. Functional changes in organelles related to Reactive oxygen species (ROS) generation were investigated by immunoblotting and by verifying expression level of relevant enzymes. Results: The CMGJD extract protected the cells against H2O2-induced morphological changes and DNA fragmentation, inhibited the increase of Heme_oxygenase-1(HO-1) and the decrease in catalase, protected against the loss of mitochondrial membrane potential, inhibited disturbances of lysosomal function, and induced an increase in peroxisomes. Conclusion: CMGJD was confirmed to have a protective effect on H2O2-induced C6 glial cell death possibly by blocking the pathways causing damage to subcellular organelles, such as mitochondria, lysosomes, and peroxisomes. We assume that CMGJD will be effective for the prevention and treatment of ischemic stroke in a clinical environment.

Extract of Saccharina japonica Induces Apoptosis companied by Cell Cycle Arrest and Endoplasmic Reticulum Stress in SK-Hep1 Human Hepatocellular Carcinoma Cells

  • Jung, Hyun Il;Jo, Mi Jeong;Kim, Hyung-Rak;Choi, Yung Hyun;Kim, Gun-Do
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.2993-2999
    • /
    • 2014
  • Saccharina japonica is a family member of Phaeophyceae (brown macro-alga) and extensively cultivated in China, Japan and Korea. Here, the potential anti-cancer effect of n-hexane fraction of S. japonica was evaluated in SK-Hep1 human hepatocellular carcinoma cells. The N-hexane fraction reduced cell viability and increased the numbers of apoptotic cells in a both dose- and time-dependent manner. Apoptosis was activated by both caspase-dependent and independent pathways. The caspase-dependent cell death pathway is mediated by cell surface death receptors and activated caspase-8 amplified the apoptotic signal either through direct activation of downstream caspase-3 or pro-apoptotic proteins (Bad, Bax and Bak) subsequently leading to the release of cytochrome c. On the other hand, caspase-independent apoptosis appeared mediated by disruption of mitochondrial membrane potential and translocation of AIF to the nucleus where they induced chromatin condensation and/or large-scale DNA fragmentation. In addition, the n-hexane fraction induced endoplasmic reticulum (ER)-stress and cell cycle arrest. The results suggested that potential anti-cancer effects of n-hexane extract from S. japonica on SK-Hep1 cells.

CDST, a Derivative of Tetrahydroisoquinoline, Induced Apoptosis in HL-60 Cells through Activation of Caspase-8, Bid Cleavage and Cytochrome c Release

  • Ju, Sung-Min;Kim, Kun-Jung;Lee, Jong-Gil;Lee, Chai-Ho;Han, Dong-Min;Yun, Young-Gab;Hong, Gi-Yun;An, Won-Gun;Jeon, Byung-Hun
    • 동의생리병리학회지
    • /
    • 제19권3호
    • /
    • pp.802-810
    • /
    • 2005
  • The tetrahydroisoquinolines included potent cytotoxic agents that showed antitumor activity,antimicrobial activity, and other biological properties. We studied the effect of CDST, 1-Chloromethyl-6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-sulfonic acid amide, a newly synthesized anti-cancer agent. The cytotoxic activity of CDST in HL-60 cells was increased in a dose-dependent manner. CDST, tetrahydroisoquinolines derivative, was cytotoxic to HL-60 cells, with IC50 of $80{\mu}g/ml$. Treatment of CDST to HL-60 cells showed the fragmentation of DNA in a dose- and time dependent manner, suggesting that thesecells underwent apoptosis. Treatment of HL-60 cells with CDST was induced in a dose- and time-dependent activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. In caspase activity assay, caspase-3 and -8 was activated after 12 h and 6 h posttreatment, respectively. CDST also caused the release of cytochrome c from mitochondria into the cytosol. CDST-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 induced Bid cleavage and Bax translocation, caused mitochondrial cytochrome c release, and induce caspase-3 activationduring CDST-induced apoptosis in HL-60 cells.

Steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are decreased in human apoptotic embryos

  • Lee, Hyo-Jin;Kim, Jin-Hee;Yang, Hyun-Won
    • Animal cells and systems
    • /
    • 제15권3호
    • /
    • pp.211-218
    • /
    • 2011
  • Fragmentation in human pre-implantation embryos has been suggested as the process of apoptosis. We have previously demonstrated a direct relationship between the increased reactive oxygen species (ROS) and apoptosis in human pre-implantation embryos. ROS is known to suppress the function of mitochondria in which steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are presented. Therefore, the purpose of this study was to examine the expression of StAR and PBR in human pre-implantation embryos and to evaluate whether reduction of these proteins is associated with apoptosis. Apoptosis was detected by annexin V-fluorescein isothiocyanate (FITC) and mitochondrial membrane potential was measured by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide (JC-1). Immunofluorescence staining and Western blotting were applied to examine the expression of StAR and PBR in the embryos. Lipid droplets in the embryos were stained with Oil Red O. The fragmented pre-implantation embryos were stained with annexin V-FITC, but not the normal ones. The mitochondria with active membrane potential were present less in the fragmented embryos compared with the non-fragmented embryos. We also confirmed that both StAR and PBR were expressed in the embryos and their expression levels were lower in the fragmented ones. In addition, the number and size of lipid droplets were increased in the fragmented embryos. The present study provides evidence that reduction of StAR and PBR in human pre-implantation embryos is associated with an increase in the lipid droplets leading to apoptosis.

Apoptotic Effects of A Cisplatin and Eugenol Co-treatment of G361 Human Melanoma Cells

  • Park, Jun-Young;Jo, Jae-Beom;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.155-162
    • /
    • 2011
  • Eugenol (4-allyl-2-methoxyphenol) is a naturally occurring phenolic compound that is widely used in dentistry as a component of zinc oxide eugenol cement that is commonly applied to the mouth environment. Cisplatin is one of the most potent known anticancer agents and shows significant clinical activity against a variety of solid tumors. This study was undertaken to investigate the synergistic apoptotic effects of co-treatments with eugenol and cisplatin on human melanoma (G361) cells. To investigate whether this co-treatment efficiently reduces the viability of G361 cells compared with each single treatment, an MTT assay was conducted. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and an analysis of DNA hypoploidy. Western blot analysis and immunofluorescent staining were also performed to evaluate the expression levels and the translocation of apoptosis-related proteins following this co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) changes were also assayed. The results indicated that a co-treatment with eugenol and cisplatin induced multiple pathways and processes associated with an apoptotic response in G361 cells including nuclear condensation, DNA fragmentation, a reduction in MMP and proteasome activity, the increase and decrease of Bax and Bcl-2, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, and the activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD). In contrast, separate treatments of 300 ${\mu}M$ eugenol or 3 ${\mu}M$ cisplatin for 24 h did not induce apoptosis. Our present data thus suggest that a combination therapy of eugenol and cisplatin is a potential treatment strategy for human melanoma.

Apoptotic Effects of Co-Treatment with a Chios Gum Mastic and Eugenol on G361 Human Melanoma Cells

  • Jo, Jae-Beom;Oh, Sang-Hun;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제38권3호
    • /
    • pp.101-110
    • /
    • 2013
  • We investigated the synergistic apoptotic effects of co-treatments with Chios gum mastic (CGM) and eugenol on G361 human melanoma cells. An MTT assay was conducted to investigate whether this co-treatment efficiently reduces the viability of G361 cells compared with each single treatment. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining, and analyses of DNA hypoploidy. Western blot analysis and immunofluorescent staining were also performed to evaluate expression and translocation of apoptosis-related proteins following CGM and eugenol co-treatment. Proteasome activity and mitochondrial membrane potential (MMP) changes were also assayed.The results indicated that the co-treatment of CGM and eugenol induces multiple pathways and processes associated with an apoptotic response in G361 cells. These include nuclear condensation, DNA fragmentation, a reduction in MMP and proteasome activity, an increase of Bax and decrease of Bcl-2, a decreased DNA content, cytochrome c release into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, and the activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD). In contrast, separate treatments of $40{\mu}g/ml$ CGM or $300{\mu}M$ eugenol for 24 hours did not induce apoptosis. Our present data thus suggest that a combination therapy of CGM and eugenol is a potential treatment strategy for human melanoma.