• Title/Summary/Keyword: Mitochondrial RNA

Search Result 350, Processing Time 0.023 seconds

The Phosphodiesterase 4 Inhibitor Roflumilast Protects against Cigarette Smoke Extract-Induced Mitophagy-Dependent Cell Death in Epithelial Cells

  • Kyung, Sun Young;Kim, Yu Jin;Son, Eun Suk;Jeong, Sung Hwan;Park, Jeong-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Background: Recent studies show that mitophagy, the autophagy-dependent turnover of mitochondria, mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure and contributes to the development of emphysema in vivo during chronic cigarette smoke (CS) exposure, although the underlying mechanisms remain unclear. Methods: In this study, we investigated the role of mitophagy in the regulation of CSE-exposed lung bronchial epithelial cell (Beas-2B) death. We also investigated the role of a phosphodiesterase 4 inhibitor, roflumilast, in CSE-induced mitophagy-dependent cell death. Results: Our results demonstrated that CSE induces mitophagy in Beas-2B cells through mitochondrial dysfunction and increased the expression levels of the mitophagy regulator protein, PTEN-induced putative kinase-1 (PINK1), and the mitochondrial fission protein, dynamin-1-like protein (DRP1). CSE-induced epithelial cell death was significantly increased in Beas-2B cells exposed to CSE but was decreased by small interfering RNA-dependent knockdown of DRP1. Treatment with roflumilast in Beas-2B cells inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting the expression of phospho-DRP1 and -PINK1. Roflumilast protected against cell death and increased cell viability, as determined by the lactate dehydrogenase release test and the MTT assay, respectively, in Beas-2B cells exposed to CSE. Conclusion: These findings suggest that roflumilast plays a protective role in CS-induced mitophagy-dependent cell death.

Mitochondrial genome mutations in mesenchymal stem cells derived from human dental induced pluripotent stem cells

  • Park, Jumi;Lee, Yeonmi;Shin, Joosung;Lee, Hyeon-Jeong;Son, Young-Bum;Park, Bong-Wook;Kim, Deokhoon;Rho, Gyu-Jin;Kang, Eunju
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.689-694
    • /
    • 2019
  • Ethical and safety issues have rendered mesenchymal stem cells (MSCs) popular candidates in regenerative medicine, but their therapeutic capacity is lower than that of induced pluripotent stem cells (iPSCs). This study compared original, dental tissue-derived MSCs with re-differentiated MSCs from iPSCs (iPS-MSCs). CD marker expression in iPS-MSCs was similar to original MSCs. iPS-MSCs expressed higher in pluripotent genes, but lower levels in mesodermal genes than MSCs. In addition, iPS-MSCs did not form teratomas. All iPSCs carried mtDNA mutations; some shared with original MSCs and others not previously detected therein. Shared mutations were synonymous, while novel mutations were non-synonymous or located on RNA-encoding genes. iPS-MSCs also harbored mtDNA mutations transmitted from iPSCs. Selected iPS-MSCs displayed lower mitochondrial respiration than original MSCs. In conclusion, screening for mtDNA mutations in iPSC lines for iPS-MSCs can identify mutation-free cell lines for therapeutic applications.

The impaired redox status and activated nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway in wooden breast myopathy in broiler chickens

  • Pan, Xiaona;Zhang, Lin;Xing, Tong;Li, Jiaolong;Gao, Feng
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.652-661
    • /
    • 2021
  • Objective: Wooden breast (WB) is a novel myopathy affecting modern broiler chickens, which causes substantial economic losses in the poultry industry. The objective of this study was to evaluate the effect of WB abnormality on meat quality, redox status, as well as the expression of genes of the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Methods: A total of 80 broilers (Ross 308, 42 days of age, about 2.6 kg body weight) raised at Jiujin farm (Suqian, Jiangsu, China) were used. Twelve unaffected (no detectable hardness of the breast area) and twelve WB-affected (diffuse remarkable hardness in the breast muscle) birds were selected from the commercial broiler farm according to the criteria proposed by previous studies. Results: The results indicated that WB showed histological lesions characterized by fiber degeneration and fibrosis, along with an increase of muscle fiber diameter (p<0.05). Moreover, higher pH value, lightness, yellowness, drip loss and cooking loss were observed in the WB group (p<0.05). Compared with the normal breast (NOR) group, the WB group showed higher formation of reactive oxygen species (p<0.05), increased level of oxidation products and antioxidant activities (p<0.05), accompanied with mitochondrial damages and lower mitochondrial membrane potential (p<0.05). Meanwhile, the relative mRNA expressions of Nrf2 and its downstream antioxidant genes including heme oxygenase-1, NAD(P)H qui none dehydrogenase 1, glutathione peroxidase, superoxide dismutase, and glutamate-cysteine ligase were higher than those of the NOR group (p<0.05). Conclusion: In conclusion, WB myopathy impairs meat quality by causing oxidative damages and mitochondrial dysfunction in broilers, even though the activated Nrf2/antioxidant response element pathway provides protection for the birds.

Reduction of Mitochondrial Derived Superoxide by Mito-TEMPO Improves Porcine Oocyte Maturation In Vitro (Mito-TEMPO에 의한 미토콘드리아 유래 초과산화물의 감소가 돼지 난모세포 성숙에 미치는 영향)

  • Yang, Seul-Gi;Park, Hyo-Jin;Lee, Sang-Min;Kim, Jin-Woo;Kim, Min-Ji;Kim, In-Su;Jegal, Ho-Geun;Koo, Deog-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.10-19
    • /
    • 2019
  • Morphology of cumulus-oocyte-complexes (COCs) at germinal vesicle (GV) stage as one of the evaluation criteria for oocyte maturation quality after in vitro maturation (IVM) plays important roles on the meiotic maturation, fertilization and early embryonic development in pigs. When cumulus cells of COCs are insufficient, which is induced the low oocyte maturation rate by the increasing of reactive oxygen species (ROS) in porcine oocyte during IVM. The ROS are known to generate including superoxide and hydrogen peroxide from electron transport system of mitochondria during oocyte maturation in pigs. To regulate the ROS production, the cumulus cells is secreted the various antioxidant enzymes during IVM of porcine oocyte. Our previous study showed that Mito-TEMPO, superoxide specific scavenger, improves the embryonic developmental competence and blastocyst formation rate by regulating of mitochondria functions in pigs. However, the effects of Mito-TEMPO as a superoxide scavenger to help the anti-oxidant functions from cumulus cells of COCs on meiotic maturation during porcine oocyte IVM has not been reported. Here, we categorized experimental groups into two groups (Grade 1: G1; high cumulus cells and Grade 2: G2; low cumulus cells) by using hemocytometer. The meiotic maturation rate from G2 was significantly (p < 0.05) decreased (G1: $79.9{\pm}3.8%$ vs G2: $57.5{\pm}4.6%$) compared to G1. To investigate the production of mitochondria derived superoxide, we used the mitochondrial superoxide dye, Mito-SOX. Red fluorescence of Mito-SOX detected superoxide was significantly (p < 0.05) increased in COCs of G2 compared with G1. And, we examined expression levels of genes associated with mitochondrial antioxidant such as SOD1, SOD2 and PRDX3 using a RT-PCR in porcine COCs at 44 h of IVM. The mRNA levels of three antioxidant enzymes expression in COCs from G2 were significantly (p < 0.05) lower than COCs of G1. In addition, we investigated the anti-oxidative effects of Mito-TEMPO on meiotic maturation of porcine oocyte from G1 and G2. Meiotic maturation and mRNA levels of antioxidant enzymes were significantly (p < 0.05) recovered in G2 by Mito-TEMPO ($0.1{\mu}M$, MT) treatment (G2: $68.4{\pm}3.2%$ vs G2 + MT: $73.9{\pm}1.4%$). Therefore, our results suggest that reduction of mitochondria derived superoxide by Mito-TEMPO may improves the meiotic maturation in IVM of porcine oocyte.

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

  • Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Kang, Songhwa;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Lamichane, Shreekrishna;Lamichane, Babita Dahal;Chae, Young Chan;Lee, Dongjun;Chung, Joo Seop;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.

Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

  • Zhu, Shuang;Park, Soyoung;Lim, Yeseo;Shin, Sunhye;Han, Sung Nim
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.477-486
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS: Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS: In intestine, significantly lower Cd36 mRNA expression (P<0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P<0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS: PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice.

Phylogenetic Analysis of Pleurotus Species Based on the Nuclear SSU rRNA Sequences (Phylogenetic Analysis of Pleurotus Species Based on the Nuclear SSU rRNA Sequences)

  • Jeong, Jae Hun;Kim, Eun Gyeong;No, Jeong Hye
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.37-37
    • /
    • 1996
  • The internal regions of nuclear small subunit rRNA from 6 plaeurotus species and 5 Pleurotus ostreatus strains were amplified by PCR and sequenced. The DNA sequences of 8 Pleurotus strains (P. ostreatus NFFA2, NFFA4501, NFFA4001, KFFA4001, KFCC11635, P florida, P. florida, P. sajor-cuju, P. pulmonarius, and P. spodoleucus) were idential, but P. cornucopiae differed from them in two bases out of 605 bases. However, p[hylogenetic analysis of the sequences by DNA-distance matrix and UPGMA methods showed that P. ostreatus NFFA2m1 and NFFA2m2, known as mutants of P. ostreatus NFFA2, belonged to anther group of Basidiomycotina, which is close to the genus Auricularia. The difference of the SSU rDNA sequences of P. cornucopiae from other Pleurotus species tested corresponds to the difference of mitochondrial plasmid type present in Pleurotus species as observed by Kim et al. (1993, Korean J. Microbiol. 31, 141-147).ishement of silencing at the HMR/hsp82 locus can occur in G1-arrested cells. Cell cycle arrest at G1 phase was achieved by treatment of early log a cell cultures with .alpha.-factor mating pheromone, which induces G1 arrest. The result suggests that passage through S phase (and therefore DNA replication) is nor required for re-establishing silencer-mediated repression at the HMNRa/HSP82 locus. Finally, to test whether de nono protein synthesis is required for re-establishment of silencer-mediated repression, cells were pretreated with cycloheximide (500 /.mu.g/ml) 120 min. It was apparent that inhibiting protein synthesis delays, but does not prevent, re-establishment of silencer-mediated repression. Altogether, these results indicate that re-establishment of silencer-mediated repression is not dependent on the DNA replication and has no requirement for protein synthesis.

Effects of Adenophora triphylla Ethylacetate Extract on mRNA Levels of Antioxidant Enzymes in Human HepG2 Cells (인간 HepG2 Cell에서 항산화 효소의 mRNA 발현에 대한 잔대 에틸아세테이트 추출물 효과)

  • Choi, Hyun-Jin;Kim, Soo-Hyun;Oh, Hyun-Taek;Chung, Mi-Ja;Cui, Cheng-Bi;Ham, Seung-Shi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1238-1243
    • /
    • 2008
  • The root of Adenophora triphylla is widely used as traditional herbal medicine in Korea. We studied its effects on sodium nitroprusside (SNP) cytotoxicity and antioxidant genes expression in HepG2 cells. To study whether Adenophora triphylla ethylacetate extract (ATea) inhibited NO-induced cell death, HepG2 cells were preincubated for 24 hr with 50 and 100 $\mu$g/mL ATea followed by 24-hr exposure to 0.5 mM SNP (exogenous NO donor). No-induced cytotoxicity was inhibited by pretreatment of ATea, as assessed by mitochondrial dehydrogenase activity (MTT assay). We further investigated the effects of ATea on mRNA levels of various enzymes of the antioxidant system such as Cu, Zn superoxide dismutase (SOD 1), Mn SOD (SOD 2), glutathione peroxidase (GPx), catalase and several enzymes of the glutathione metabolism [glutathione reductase (GR), $\gamma$-glutamyl-cystein synthetase (GCS), glutathione-S-transferase (GST), $\gamma$-glutamyltranspeptidase ($\gamma$-GT), glucose-6-phosphate dehydrogenase (G6PD)] by RT-PCR. CAT, GCS, GR and G6PD mRNA levels were increased after treatment with ATea. The SOD 1, SOD 2, GPx, GST and $\gamma$-GT mRNA levels were not affected in ATea-treated HepG2 cells. We concluded that ATea have an indirect antioxidant effects, perhaps via induction of CAT, GCS, GR and G6PD.

Genetic Variation and Population Specific Mitochondrial DNA Haplotype Found in the Jeju Native Pig Population (제주재래돼지 집단서 집단특이적 mtDNA Haplotype과 유전적 다양성)

  • Han, S.H.;Cho, I.C.;Lee, C.E.;Lee, S.S.;Kang, S.Y.;Choi, Y.L.;Oh, W.Y.;Sung, P.N.;Ko, S.B.;Oh, M.Y.;Ko, M.S.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.917-924
    • /
    • 2004
  • Using PCR-RFLP haplotyping for the mitochondrial DNA(mtDNA) fragment containing the NADH dehydrogenase 2 gene(ND2) and three tRNA genes(tRNA-Met, tRNA-Trp and tRNA-Ala), we characterized the genetic diversity of five pig breeds including Jeju native pigs. mtDNA polymorphisms showing distinct cleavage patterns were found in the pig breeds. Two digestion patterns were detected when HaeIII- and Hinfl-RFLP, and four in the Tsp5091-RFLP analyses. Combining the three restriction enzyme digestion patterns found in five different pig breeds, four mtDNA haplotypes were observed and the haplotype frequencies were significantly different by the pig breeds. A monomorphic haplotype, mtWB, was observed in both Korean wild boars and Large White pigs. Both Duroc and Landrace pigs contained two haplotypes suggesting their multiple maternal lineages. Jeju native pig has two haplotypes(mtJN and mtJD). Of these, mtJN is identified as a Jeju native pig specific haplotype. This study suggested that more than two progenitor populations have been taken part in the domestication process of the Jeju native pig population, and/or probably subsequent crossing with other pig breeds from near east Asia. Unlike with our prediction, there was no direct evidence under molecular levels on the maternal introgression of Korean wild boar in the domestication of Jeju native pigs. In conclusion, specificity of mtDNA haplotypes related to pig breeds win be useful for identifying the maternal lineage as wen as constructing the genealogical pedigree in pigs.

Ethyl acetate fraction of GGEx18 modulates fatty acid β-oxidizing enzymes (In vitro 동물세포에서 GGEx18의 ethyl acetate 분획물에 의한 지방산 β-산화효소 유전자 발현의 조절)

  • Joo, Byung-Soo;Lee, Hee-Young;Lee, Hye-Rim;Yoon, Mi-Chung;Seo, Bu-Il;Kim, Beom-Hoi;Shin, Soon-Shik
    • The Korea Journal of Herbology
    • /
    • v.27 no.2
    • /
    • pp.53-59
    • /
    • 2012
  • Objectives : This study was undertaken to investigate the effects of the GGEx18 ethyl acetate fraction (EF) on lipid accumulation and gene expression of fatty acid-oxidizing enzymes using 3T3-L1 adipocytes, C2C12 skeletal muscle cells, and NMu2Li liver cells. Methods : PPAR${\alpha}$, AMPK and UCPs transactivation was examined in NMu2Li hepatocytes, C2C12 myocytes, and 3T3-L1 preadipocytes using transient transfection assays. Results : 1. Compared with control, EF significantly increased the mRNA expression of VLCAD in 3T3-L1 adipocytes. 2. Compared with control, EF (0.1 ${\mu}g/ml$) significantly inhibited lipid accumulation in 3T3-L1 adipocytes. 3. EF significantly increased the mRNA expression of AMPK${\alpha}$1, AMPK${\alpha}$2 and PPAR${\alpha}$ in C2C12 skeletal muscle cells compared with control. 4. EF significantly increased the mRNA expression of genes involved in fatty acid ${\beta}$-oxidation, such as thiolase, MCAD, and CPT-1 in C2C12 skeletal muscle cells compared with control. 5. EF significantly increased the mRNA expression of UCP2 involved in energy expenditure in C2C12 skeletal muscle cells compared with control. 6. Compared with control, EF (10 ${\mu}g/ml$) significantly inhibited lipid accumulation in C2C12 skeletal muscle cells. 7. EF (10 ${\mu}g/ml$) significantly increased the mRNA expression of ACOX, HD, VLCAD and MCAD in NMu2Li liver cells compared with control. Conclusions : These results suggest that EF may prevent obesity by increasing the mRNA expression of mitochondrial fatty acid ${\beta}$-oxidizing enzymes in 3T3-L1 adipocytes, by not only regulating the fatty acid oxidation through activation of AMPK and PPAR${\alpha}$, but also increasing the UCP2 mRNA expression in C2C12 skeletal muscle cells, and by stimulating the mRNA expression of fatty acid-oxidizing enzymes in NMu2Li liver cells.