• Title/Summary/Keyword: Mitochondrial Protein

Search Result 589, Processing Time 0.031 seconds

The Changes of Cerebral Metabolic Parameters, Serum Levels of Neuron-Specific Enolase and S-100$\beta$ Protein During Retrograde Cerebral Perfusion Under Profound Hypothermic Total Circulatory Arrest (초저체온하 완전순환정지 시에 이용되는 역행성 뇌관류의 시간에 따른 뇌대사 지표, 혈청 내 neuron-specific enolase, 및 S-100 베타단백의 변화)

  • 김경환
    • Journal of Chest Surgery
    • /
    • v.34 no.9
    • /
    • pp.653-661
    • /
    • 2001
  • Background: Retrograde cerebral perfusion(RCP) is one of the methods used for brain protection during aortic arch surgery. The author previously published the data, however, for the safety of it, there still remains many controversies. The author performed RCP and checked various parameters to clarify the possibility of early detection of cerebral injury. Material and Method: The author used pigs(Landrace species) weighing 25 to 30kg and performed RCP for 120 minutes. After weaning of cardiopulmonary bypass, we observed pigs for another 120 minutes. Rectal temperature, jugular venous oxygen saturation, central venous pressure were continuously monitored, and the hemodynamic values, histological changes, and serum levels of neuron-specific enolose(NSE) and S100$\beta$ protein were checked. Central venous pressure during RCP was maintained in the range of 20 to 25 mmHg. Result: Flow rates(ml/min) during RCP were 224.3$\pm$87.5(20min), 227.1$\pm$111.0(40min), 221.4$\pm$119.5(60min), 230.0$\pm$136.5(80min), 234.3$\pm$146.1(100min), and 184.3$\pm$50.5(120min). Serum levels of NSE did not increase after retrograde cerebral perfusion. Serum levels of S100$\beta$ protein(ng/ml) were 0.12$\pm$0.07(induction of anesthesia), 0.12$\pm$0.07(soon after CPB), 0.19$\pm$0.12(20min after CPB), 0.25$\pm$0.06(RCP 20min), 0.29$\pm$0.08(RCP 40min), 0.41$\pm$0.05(60min), 0.49$\pm$0.03(RCP 80min), 0.51$\pm$0.10(RCP 100min), 0.46$\pm$0.11(RCP 120min), 0.52$\pm$0.15(CPBoff 60min), 0.62$\pm$0.15(60min after rewarming), 0.76$\pm$0.17(CPBoff 30min), 0.81$\pm$0.20(CPBoff 60min), 0.84$\pm$0.23(CPBoff 90min) and 0.94$\pm$0.33(CPBoff 120min). The levels of S100$\beta$ after RCP were significantly higher than thosebefore RCP(p<0.05). The author could observe the mitochondrial swellings using transmission electron microscopy in neocortex, basal ganglia and hippocampus(CA1 region). Conclusion: The author observed the increase of serum S100$\beta$ after 120 minutes of RCP. The correlation between its level and brain injury is still unclear. The results should be reevaluated with longterm survival model also considering the confounding factors like cardiopulmonary bypass.

  • PDF

De novo Expression of Hepatic UCP3 Is Time-Dependently Related with Metabolic Function in Fenofibrate-Treated High Fat Diet Rats (고지방 섭취한 쥐에서 페노파이브레이트 복용에 의한 간 UCP3 발현 기간과 대사변화 관계)

  • Park, Mi-Kyoung;Kang, Ah-Young;Seo, Eun-Hui;Joe, Yeon-Soo;Kang, Soo-Jeong;Hong, Sook-Hee;Kim, Duk-Kyu;Lee, Hye-Jeong
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • Uncoupling protein 3 (UCP3) is a mitochondrial protein that is expressed predominantly in skeletal muscle. It may play a role in altering metabolic function. However, its major physiological roles are not fully understood. Recently de novo expression of UCP3 in rat liver by fenofibrate was reported. We also reported previously that fenofibrate-induced de novo expression of UCP3 contributes to reduction of adipose tissue in obese rats. In the present study, we investigated that ienofibrate-induced expression of UCP3 in rat liver is related with metabolic function such as body weight and hepatic lipid content by time-dependent manner in high-fat diet rats. Eight-week-old male Sprague-Dawley rats were randomly divided into two groups; the high fat diet group (HF, n=16) and fenofibrate-treated high fat diet group (HFF, n=16). The mRNA expression of hepatic UCP3 was detected as early as 1 week of fenofibrate treatment by quantitative real-time PCR and the amount of mRNA was increased time-dependently. The mean body weight of the HFF group was significantly less com. pared with the HF group after 6 weeks of fenofibrate treatment, even though there was no difference of food intake between the two groups. Rectal temperature was increased during 4 to 6 weeks of fenofibrate treatment and body weight was decreased after 6 weeks of treatment. These results were corresponded with the increased amount of the expression of UCP3 mRNA and protein. We suggest that de novo expression of hepatic UCP3 is increased time-dependently with fenofibrate treatment and that the amount of expression is correlated with metabolic function.

Effect of Gonadotropin Releasing Hormone-Agonist on Apoptosis of Luteal Cells in Pregnant Rat (Gonadotropin Releasing Hormone-Agonist가 임신된 흰쥐 황체세포의 세포자연사에 미치는 영향)

  • 양현원;김종석;박철홍;윤용달
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.131-139
    • /
    • 2002
  • Since GnRH and its receptor genes are expressed in the ovary, it has been suggested that ovarian GnRH might be involved in the regulation of ovarian function and the apoptosis of ovarian cells. However, it was not known well on the expression and function of GnRH and its receptor in the corpus luteum. The present study was undertaken to investigate whether GnRH and its receptor are expressed in luteal cells and GnRH has any effect on the apoptosis of luteal cells. Luteal cells obtained from the pregnant rats were cultured and stained for GnRH and its receptor proteins. Cultured luteal cells showed distinct immunoreactivity against both anti-GnRH and anti-GnRH receptor antibodies. In addition, the presence of GnRH receptor protein in cultured cells was confirmed by Western blot analysis. To investigate the effect of GnRH on the apoptosis of luteal cells, luteal cells were cultured in the presence of 10$^{-6}$ M GnRH-agonist(GnRH-Ag) for 3, 8, and 12h. TUNEL assay showed that the number of cells undergoing apoptosis increased 12h after culture(P<0.05). DNA fragmentation analysis confirmed the results such that the cells treated for 12h showed the greatest increase of fragmentation(p<0.05). Further, Western blot analysis of cytochrome c in the mitochondrial and cytoplasmic fractions of the luteal cells showed that GnRH-Ag treatment increased the content of cytochrome c in cytoplasm. These results demonstrate that the luteal cells express GnRH and its receptor and GnRH-Ag treatment induces apoptosis of the luteal cells via mitochondrial release of cytochrome c. The present study suggest that the releasing of cytochrome c from mitochondria might be involved in the luteal cell apoptosis induced by GnRH-Ag.

  • PDF

Mutational Analysis of Mitochondria DNA in Children with IgA Nephropathy (소아 IgA 신병증 환자에서 미토콘드리아 DNA 돌연변이 분석)

  • Eom, Tae Min;Jang, Chang-Han;Kim, Hyoung Kyu;Kim, Nari;Chung, Yun Seo;Han, Jin;Chung, Woo Yeong
    • Childhood Kidney Diseases
    • /
    • v.16 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • Purpose: The association of mitochondrial DNA (mtDNA) mutations, deletions and copy number with progressive changes in patients with some glomerular disease and end-stage renal disease have been reported. In this study, we performed mtDNA mutation analysis in children with IgA nephropathy to investigate its role in progressive clinical course. Methods: Seven children with IgA nephropathy were involved in this study. MtDNA isolated from platelet was amplified by PCR and sequenced entirely. Results: The mean age at renal biopsy was $11.5{\pm}2.2$ year and the mean age at latest evaluation was $17.9{\pm}3.2$ year. The mean follow-up period were $7.8{\pm}3.1$ years. Patients was divided into 2 groups according to the amount of proteinuria at presenting manifestation. Group 2 patients were nephrotic syndrome. Renal function reveals within normal range in all patients. In group 2 patients, the mean serum albumin level was significantly lower than those of group 1 ($3.7{\pm}0.6g/dL$ vs. $4.7{\pm}0.2g/dL$, P=0.0241) and the mean total cholesterol level was significantly higher than those of group 1 ($222.7{\pm}35.7mg/dL$ vs. $148.3{\pm}29.1mg/dL$, P=0.0283). In Group 2 patients, total amount of protein of 24 hour collected urine also significantly higher than those of group 1 ($1,466.0{\pm}742.5mg$ vs. $122.5{\pm}48.1mg$, P=0.0135). Pr/Cr ratio in random urine sample was also higher in group 2 than those of group 1 but the statistical significance was not noted ($1.8{\pm}1.6$ vs. $0.2{\pm}0.2$, P=0.0961). Deletion of mtDNA nt 8272-8281 were observed in two patients, one patient in each groups, respectively. This is noncoding lesion. No patients demonstrated the mtDNA mutations. Conclusions: We have identified a deletion of mtDNA nt 8272-8281 in two children with IgA nephropathy. Further studies are needed to clarify the role of mitochondrial function in the progressive change of IgA nephropathy.

Euphorbiae Immifusae Sensitizes Apoptosis of TRAIL-resistant Human Gastric Adenocarcinoma AGS Cells (지금초 추출물에 의한 TRAIL 저항성 인체위암세포의 세포사멸 유도)

  • Lee, Jae-Jun; Shin, Dong-Hyuk;Park, Sang-Eun;Kim, Won-Il;Park, Dong-Il;Choi, Yung-Hyun;Hong, Sang-Hoon
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.120-128
    • /
    • 2008
  • The death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/ Apo1L is a cytokine that activates apoptosis through cell surface death receptors. TRAIL has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. Euphorbiae humifusae Wind has been used in traditional Oriental medicine as a folk remedy used for the treatment of cancer. However, the mechanism responsible for the anticancer effects of E. humifusae not clearly understood. Here, we show that treatment with subtoxic doses of water extract of E. humifusae (WEEH) in combination with TRAIL induces apoptosis in TRAIL-resistant human gastric carcinoma AGS cells. Combined treatment with WEEH and TRAIL induced chromatin condensation and sub-G1 phase DNA content. These indicators of apoptosis were correlated with the induction of caspase activity that resulted in the cleavage of poly (ADP-ribose) polymerase. Combined treatment also triggered the loss of mitochondrial membrane potential. Furthermore, co-treatment with WEEH and TRAIL down-regulated the protein levels of the anti-apoptotic proteins such as Bcl-2, Bcl-xL, XIAP and cIAP-1. Although more study will be needed to examine the detailed mechanisms, this combined treatment may offer an attractive strategy for safely treating gastric adenocarcinomas and the results provide important new insights into the possible molecular mechanisms of the anticancer activity of E. humifusae.

Attenuation of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid Phosphate in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 lipopolysaccharide 자극에 의한 염증성 및 산화적 스트레스에 미치는 5-aminolevulinic acid phosphate의 영향)

  • Ji, Seon Yeong;Kim, Min Yeong;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cha, Hee-Jae;Kim, Heui-Soo;Kim, Suhkmann;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.818-826
    • /
    • 2021
  • 5-Aminolevulinic acid phosphate (5-ALA-p) is a substance obtained by eluting 5-ALA (a natural delta amino acid) with aqueous ammonia, adding phosphoric acid to the eluate, and then adding acetone to confer properties suitable for use in photodynamic therapy applications. However, its pharmacological efficacy, including potential mechanisms of antioxidant and anti-inflammatory reactions, remains unclear. This study aimed to investigate the effects of 5-ALA-p on oxidative and inflammatory stresses in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our data showed that 5-ALA-p significantly inhibited excessive phagocytic activity via LPS and attenuated oxidative stress in LPS-treated RAW 264.7 cells. Furthermore, 5-ALA-p improved mitochondrial biogenesis reduced by LPS, suggesting that 5-ALA-p restores mitochondrial damage caused by LPS. Additionally, 5-ALA-p significantly suppressed the release of nitric oxide (NO) and pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, which are associated with the inhibition of inducible NO synthase and respective cytokine expression. Furthermore, 5-ALA-p reduced the nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that the anti-inflammatory effect of 5-ALA-p is mediated through the suppression of NF-κB and MAPK signaling pathways. Based on these results, 5-ALA-p may serve as a potential candidate to reduce inflammation and oxidative stress.

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

  • Lee, Seung Eun;Kim, Eun Young;Choi, Hyun Yong;Moon, Jeremiah Jiman;Park, Min Jee;Lee, Jun Beom;Jeong, Chang Jin;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.635-647
    • /
    • 2014
  • Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.

A Case of End-Stage Renal Disease with Joubert Syndrome due to CEP290 Mutation (CEP290 돌연변이로 인해 발생한 Joubert 증후군 말기 신부전 1례)

  • Kim, Sung Hoon;Lee, Sang Taek;Seong, Moon-Woo;Kim, Man Jin;Lee, Jun Hwa
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • Joubert syndrome (JS) is a rare genetic disorder that is characterized by ataxia, hypotonia, developmental delay, respiratory abnormalities such as apnea-hyperpnea, and abnormal eye movements. The pathognomonic diagnostic finding is the "molar tooth sign" (MTS) on brain magnetic resonance imaging (MRI), described as cerebellar vermis hypoplasia or dysplasia, thick and horizontally oriented superior cerebellar peduncles, and an abnormally deep interpeduncular fossa. JS is characterized by genetic heterogeneity: pathogenic variants in over 30 genes have been identified to date. The CEP290 protein, which is on chromosome 12q21.3, is most frequently mutated in patients with JS, especially with renal involvement. Here, we report a case of JS in a 14-year-old male patient with end-stage renal disease. To the best of our knowledge, this is the first Korean report of a patient with JS due to CEP290 mutation (c.6012-12T> A) whose diagnosis was confirmed after repetitive MRI. We suggest consultation with an experienced neuro-radiologist and follow-up MRI studies to detect a "hidden" MTS if clinical findings suggest a diagnosis of JS. Furthermore, even in the absence of an MTS, whole exome sequencing should be considered.

Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways (HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도)

  • Hwang, Ju Yeong;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.984-992
    • /
    • 2015
  • Sanguinarine is a benzophenanthridine alkaloid originally isolated from the roots of Sanguinaria canadensis. It has multiple biological activities (e.g., antioxidant and antiproliferative) and immune-enhancing potential. In this study, we explored the proapoptotic properties and modes of action of sanguinarine in human hepatocellular carcinoma HepG2 cells. Our results revealed that sanguinarine inhibited HepG2 cell growth and induced apoptosis in a dose-dependent manner. The induction of apoptosis by sanguinarine was associated with the up-regulation of Fas and Bax, the release of cytochrome c from the mitochondria to the cytosol, and the loss of the mitochondrial membrane potential. In addition, sanguinarine activated caspase-9 and -8, initiator caspases of the intrinsic and death extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Sanguinarine also triggered the generation of reactive oxygen species (ROS). The elimination of ROS by N-acetylcysteine reversed sanguinarine-induced apoptosis. Furthermore, sanguinarine induced the dephosphorylation of Akt and the phosphorylation of mitogen-activated protein kinases, including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38. The growth inhibition was enhanced by the combined treatment of sanguinarine with a phosphatidylinositol 3'-kinase (PI3K) inhibitor and an ERK inhibitor but not JNK and p38 inhibitors. Overall, our data indicate that the proapoptotic effects of sanguinarine in HepG2 cells depend on ROS production and the activation of both intrinsic and extrinsic signaling pathways, which is mediated by blocking PI3K/Akt and activating the ERK pathway. Thus, our data suggest that sanguinarine may be a natural compound with potential for use as an antitumor agent in liver cancer.

A Study of the Generation of Transgenic Chickens That Express Human SOD-3 Protein (사람의 SOD-3 단백질을 발현하는 형질전환 닭 생산 연구)

  • Byun, S.J.;Park, C.;Kim, J.A.;Woo, J.S.;Lee, H.C.;Kim, T.Y.;Kim, S.H.;Seong, H.H.;Park, J.K.;Jeon, I.S.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.3
    • /
    • pp.241-245
    • /
    • 2008
  • Lentiviral vector system is efficient vehicles for the delivery of exogenous genes, and it is generally used in the generation of transgenic chickens. In this study, we used recombinant lentiviral vectors to generate transgenic chicks that express the human superoxide dismutase-3 gene driven by the chicken ovalbumin promoter. It is well known that superoxide dismutases(SODs) are believed to play a crucial role in protecting cells against oxygen toxicity. There are three forms of SOD proteins: cytosolic Cu-Zn SOD, mitochondrial Mn SOD, and extracellular SOD(SOD-3). The recombinant lentivirus containing the human SOD-3 gene was injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. From 341 injected embryos, the 78 chicks hatched after 21 days incubation. The hatched chicks were screened for the human SOD-3 gene by using PCR. Two of 47 male chickens that survived to sexual maturity contained the human SOD-3 gene in their semen. These results showed that our transgenic chicken generation system was completely established.