• 제목/요약/키워드: Mitochondrial DNA mutations

검색결과 36건 처리시간 0.028초

소음성 난청에서의 Mitochondrial DNA A3243G, A1555G, A7445G 돌연변이 (Mitochondrial DNA Mutation (3243A→G,1555A→4G,7445A→G) in Noise-Induced)

  • 홍영습;;이명진;곽기영;황찬호;신동훈;곽종영;이용환;김종민;김준연
    • 생명과학회지
    • /
    • 제14권6호
    • /
    • pp.913-919
    • /
    • 2004
  • 본 연구는 소음성 감각신경성난청 환자의 유전적 관련요인을 파악하고자 관련성이 의심되는 mitochondrial DNA의 돌연변이와 소음성 감각신경성난청과의 관련성을 조사하였다. 말초혈액 백혈구로부터 DNA를 추출한 후, mtDNA 3243, 1555, 7445부위의 $A{\rightarrow}G$ 돌연변이 유무를 관찰하기 위하여 mtDNA 3243, 1555, 7445부위 가 포함된 mtDNA fragment를 중합효소 연쇄반응으로 증폭하고 유전자 제한효소로 소화하여 전기영동하고 ethidium bromide 용액으로 염색하여 UV transilluminator에서 관찰하였다. 그리고, PCR 산물을 이용하여 DNA 염기서열을 분석하여 mtDNA 3243, 1555, 7445부 위에서의 염기서열 분석을 실시하여 mtDNA 3243, 1555, 7445부위 의 $A{\rightarrow}G$ 돌연변이를 관찰하였다 MtDNA A3243G, A1555G, A7445G의 돌연변이를 관찰한 결과 돌연변이 부위가 포함된 fragment가 소음성 감각신경성난청 환자군, 감각신경성난청 환자군, 대조군 모두에서 증폭됨을 관찰하였다. 또한 PCR 산물을 제한효소로 처 리 한 결과에서도 mtDNA에서 3243, 1555, 7445부위의 $A{\rightarrow}G$ 돌연변이가 일어나지 않았음을 알 수 있었다. PCR산물을 이용하여 DNA 염기서열을 분석하여 mtDNA 3243, 1555, 7445부위에서의 염기서열을 확인한 결과 이미 밝혀진 사람의 mtDNA 3243, 1555, 7445부 위의 염기서열과 동일한 염기서열임이 확인되었으므로 mtDNA 3243, 1555, 7445부위의 $A{\rightarrow}G$ 돌연변이가 일어나지 않았음을 확인하였다. 소음성 감각신경성난청과 mtDNA 3243, 1555, 7445부위의 $A{\rightarrow}G$ 돌연변이와는 관련이 없는 것으로 관찰되었다.

New Haplotypes of the ATP Synthase Subunit 6 Gene of Mitochondrial DNA are Associated with Acute Lymphoblastic Leukemia in Saudi Arabia

  • Yacoub, Haitham Ahmed;Mahmoud, Wael Mahmoud;El-Baz, Hatim Alaa-Eldeen El-Din;Eid, Ola Mohamed;El-Fayoumi, Refaat Ibrahim;Mahmoud, Maged Mostafa;Harakeh, Steve;Abuzinadah, Osama H.A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10433-10438
    • /
    • 2015
  • Background: Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children and represents approximately 25% of cancer diagnoses among those younger than 15 years of age. Aim and Objectives: This study investigated substitutions in the ATP synthase subunit 6 gene of mitochondrial DNA (mtDNA) as a potential diagnostic biomarker for early detection and diagnosis of acute lymphoblastic leukemia. Based on mtDNA from 23 subjects diagnosed with acute lymphoblastic leukemia, approximately 465 bp of the ATP synthase subunit 6 gene were amplified and sequenced. Results: The sequencing revealed thirty-one mutations at 14 locations in ATP synthase subunit 6 of mtDNA in the ALL subjects. All were identified as single nucleotide polymorphisms (SNPs) with a homoplasmic pattern. The mutations were distributed between males and females. Novel haplotypes were identified in this investigation: haplotype (G) was recorded in 34% in diagnosed subjects; the second haplotype was (C) with frequency of 13% in ALL subjects. Neither of these were observed in control samples. Conclusions: These haplotypes were identified for the first time in acute lymphoblastic leukemia patients. Five mutations able to change amino acid synthesis for the ATP synthase subunit 6 were associated with acute lymphoblastic leukemia. This investigation could be used to provide an overview of incidence frequency of acute lyphoblastic leukemia (ALL) in Saudi patients based on molecular events.

Low Molecular Weight Polyethylenimine-Mitochondrial Leader Peptide Conjugate for DNA Delivery to Mitochondria

  • Choi, Joon-Sig;Choi, Min-Ji;Go, Gyeong-Su;Rhee, Byoung-Doo;KimPak, Young-Mi;Bang, In-Seok;Lee, Min-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1335-1340
    • /
    • 2006
  • It has been found that a number of diseases are associated with mutations in the mitochondrial DNA. Therapeutic gene delivery to mitochondria has been suggested as a clinical option for these diseases. In this study, we developed a gene carrier to mitochondria by the conjugation of mitochondrial leader peptide (LP) to polyethylenimine (PEI). Mitochondrial LP conjugated PEI (PEI-LP) was synthesized with low molecular weight PEI (2,000 Da, PEI2K). Gel retardation assay showed that PEI2K-LP formed complexes at a 1.0/1 weight ratio. In addition, PEI2K-LP protected DNA from the enzymatic degradation for at least 60 min, while naked DNA was completely degraded within 20 min. PEI2K-LP was compared with LP conjugated high molecular weight PEI (25,000 Da, PEI25K) in terms of toxicity and delivery efficiency. MTT assay showed that PEI2K-LP had much lower cytotoxicity than PEI25K-LP to 293 cells. In addition, cell-free DNA delivery assay showed that PEI2K-LP delivered more DNA to mitochondria at a 1.8/1 weight ratio than naked DNA or PEI. This result suggests that PEI2K-LP may be useful for the development of mitochondrial gene therapy system with lower cytotoxicity.

Dysfunctional pancreatic cells differentiated from induced pluripotent stem cells with mitochondrial DNA mutations

  • So, Seongjun;Lee, Song;Lee, Yeonmi;Han, Jongsuk;Kang, Soonsuk;Choi, Jiwan;Kim, Bitnara;Kim, Deokhoon;Yoo, Hyun-Ju;Shim, In-Kyong;Oh, Ju-Yun;Lee, Yu-Na;Kim, Song-Cheol;Kang, Eunju
    • BMB Reports
    • /
    • 제55권9호
    • /
    • pp.453-458
    • /
    • 2022
  • Diabetes mellitus (DM) is a serious disease in which blood sugar levels rise abnormally because of failed insulin production or decreased insulin sensitivity. Although many studies are being conducted for the treatment or early diagnosis of DM, it is not fully understood how mitochondrial genome (mtDNA) abnormalities appear in patients with DM. Here, we induced iPSCs from fibroblasts, PBMCs, or pancreatic cells of three patients with type 2 DM (T2D) and three patients with non-diabetes counterpart. The mtDNA mutations were detected randomly without any tendency among tissues or patients. In T2D patients, 62% (21/34) of iPSC clones harbored multiple mtDNA mutations, of which 37% were homoplasmy at the 100% mutation level compared to only 8% in non-diabetes. We next selected iPSC clones that were a wild type or carried mutations and differentiated into pancreatic cells. Oxygen consumption rates were significantly lower in cells carrying mutant mtDNA. Additionally, the mutant cells exhibited decreased production of insulin and reduced secretion of insulin in response to glucose. Overall, the results suggest that screening mtDNA mutations in iPSCs from patients with T2D is an essential step before pancreatic cell differentiation for disease modeling or autologous cell therapy.

An experimental approach to study the function of mitochondria in cardiomyopathy

  • Chung, Youn Wook;Kang, Seok-Min
    • BMB Reports
    • /
    • 제48권10호
    • /
    • pp.541-548
    • /
    • 2015
  • Cardiomyopathy is an inherited or acquired disease of the myocardium, which can result in severe ventricular dysfunction. Mitochondrial dysfunction is involved in the pathological process of cardiomyopathy. Many dysfunctions in cardiac mitochondria are consequences of mutations in nuclear or mitochondrial DNA followed by alterations in transcriptional regulation, mitochondrial protein function, and mitochondrial dynamics and energetics, presenting with associated multisystem mitochondrial disorders. To ensure correct diagnosis and optimal management of mitochondrial dysfunction in cardiomyopathy caused by multiple pathogenesis, multidisciplinary approaches are required, and to integrate between clinical and basic sciences, ideal translational models are needed. In this review, we will focus on experimental models to provide insights into basic mitochondrial physiology and detailed underlying mechanisms of cardiomyopathy and current mitochondria-targeted therapies for cardiomyopathy.

Mutation analyses in Korean patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes)

  • Yoo, Han-Wook;Kim, Gu-Hwan;Ko, Tae-Sung
    • Journal of Genetic Medicine
    • /
    • 제1권1호
    • /
    • pp.39-43
    • /
    • 1997
  • The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is inherited maternally, in which the MTTL1*MELAS 3243 mutation has been most commonly found as a heteroplasmy of A to G point mutation in the $tRNA^{Leu(UUR)}$ gene. The MTTL1*MELAS 3271 mutation is known to be the second common mutation, though clinical features of both mutations are not remarkably different. Recently, a variety of minor mutations have been reported in patients with MELAS. In this study, major efforts have been made to investigate the allele frequency of major three mutations including MTTL1*MELAS 3243, 3252, 3271 in 10 Korean families with MELAS probands. The PCR and subsequent direct sequencing of the PCR product in the regions spanning these three mutation sites were employed to identify the mutation in each proband. All family members have been screened for the presence of these three mutations by PCR-RFLP assay using Apa I, Acc I and Bfr I restriction enzymes. The MTTL1*MELAS 3243 mutation was most commonly found (7 out of 10 families tested) followed by the MTTL1*MELAS 3271 which was identified in 1 out of 10 families. In the remaining 2 families none of three mutations were found, indicating the presence of either nuclear mutation or yet unidentified mitochondrial DNA mutation in these families.

  • PDF

Mitochondrial Genome Microsatellite Instability and Copy Number Alteration in Lung Carcinomas

  • Dai, Ji-Gang;Zhang, Zai-Yong;Liu, Quan-Xing;Min, Jia-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2393-2399
    • /
    • 2013
  • Objective: Mitochondrial DNA (mtDNA) is considered a hotspot of mutations in various tumors. However, the relationship between microsatellite instability (MSI) and mtDNA copy number alterations in lung cancer has yet to be fully clarifieds. In the current study, we investigated the copy number and MSI of mitochondrial genome in lung carcinomas, as well as their significance for cancer development. Methods: The copy number and MSI of mtDNA in 37 matched lung carcinoma/adjacent histological normal lung tissue samples were examined by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) assays for sequence variation, followed by sequence analysis and fluorogenic 5'-nuclease real-time PCR. Student's t test and linear regression analyses were employed to analyze the association between mtDNA copy number alterations and mitochondrial MSI (mtMSI). Results: The mean copy number of mtDNA in lung carcinoma tissue samples was significantly lower than that of the adjacent histologically normal lung tissue samples (p<0.001). mtMSI was detected in 32.4% (12/37) of lung carcinoma samples. The average copy number of mtDNA in lung carcinoma samples containing mtMSI was significantly lower than that in the other lung carcinoma samples (P<0.05). Conclusions: Results suggest that mtMSI may be an early and important event in the progression of lung carcinogenesis, particularly in association with variation in mtDNA copy number.

Repair of UV-induced Cyclobutane Pyrimidine Dimers in Human Mitochonrial DNA-less Cells

  • Ikushima, Takaji;Gu, Ning;Tanizaki, Yuichi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.479-481
    • /
    • 2002
  • UV-induced DNA damage causes cell killing and mutations leading to carcinogenesis. In normal human cells, UV damage such as cyclobutane pyrimidine dimers (CPDs) and primidine-prymidone (6-4) photoproducts are mainly repaired by nucleotide excision repair mechanism. The molecular processes have been well characterized recently. To know the influence of mitochondrial genome on the nucleotide excision repair mechanism against CPDs, we comparatively examined the production of CPDs by UVC irradiation and their repair kinetics in human cells completely lacking mitochondrial DNA (mtDNA) and the parental HeLa S cells. Whole DNA extracted from the cells exposed to UVC was treated with T4-endonuclease V to break the phosphodiester bond adjacent to CPDs. The DNA was electrophoresed in a denaturing agarose gel, which was visualized by ethidium bromide staining. The relative amount of CPDs was determined by image analysis using NIH Image software. MtDNA- less (rho-O) cells were apparently more sensitive to UVC than HeLa S cells, while the level of induction of CPDs in rho-O and HeLa cells was comparable. The repair of CPDs was less efficient in rho-O cells compared with HeLa cells. The residual amount of CPDs after 24-h repair was larger in rho-O cells than in HeLa cells where more than 90 % of CPDs were repaired by then. The non-repaired CPDs would lead to apoptosis in rho-O cells. These results suggest that mitochondrial genome may contribute to some ATP-dependent steps in nucletide excision repair by supplying sufficient ATP which is generated through a respiratory chain in mitochondria.

  • PDF

Mitochondrial transplantation: an overview of a promising therapeutic approach

  • Ji Soo Kim;Seonha Lee;Won-Kon Kim;Baek-Soo Han
    • BMB Reports
    • /
    • 제56권9호
    • /
    • pp.488-495
    • /
    • 2023
  • Mitochondrial transplantation is a promising therapeutic approach for the treatment of mitochondrial diseases caused by mutations in mitochondrial DNA, as well as several metabolic and neurological disorders. Animal studies have shown that mitochondrial transplantation can improve cellular energy metabolism, restore mitochondrial function, and prevent cell death. However, challenges need to be addressed, such as the delivery of functional mitochondria to the correct cells in the body, and the long-term stability and function of the transplanted mitochondria. Researchers are exploring new methods for mitochondrial transplantation, including the use of nanoparticles or CRISPR gene editing. Mechanisms underlying the integration and function of transplanted mitochondria are complex and not fully understood, but research has revealed some key factors that play a role. While the safety and efficacy of mitochondrial transplantation have been investigated in animal models and human trials, more research is needed to optimize delivery methods and evaluate long-term safety and efficacy. Clinical trials using mitochondrial transplantation have shown mixed results, highlighting the need for further research in this area. In conclusion, although mitochondrial transplantation holds significant potential for the treatment of various diseases, more work is needed to overcome challenges and evaluate its safety and efficacy in human trials.

Alpers-Huttenlocher Syndrome First Presented with Hepatic Failure: Can Liver Transplantation Be Considered as Treatment Option?

  • Park, Sowon;Kang, Hoon-Chul;Lee, Jin-Sung;Park, Young Nyun;Kim, Seung;Koh, Hong
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제20권4호
    • /
    • pp.259-262
    • /
    • 2017
  • Mitochondria play essential role in eukaryotic cells including in the oxidative phosphorylation and generation of adenosine triphosphate via the electron-transport chain. Therefore, defects in mitochondrial DNA (mtDNA) can result in mitochondrial dysfunction which leads to various mitochondrial disorders that may present with various neurologic and non-neurologic manifestations. Mutations in the nuclear gene polymerase gamma (POLG) are associated with mtDNA depletions, and Alpers-Huttenlocher syndrome is one of the most severe manifestations of POLG mutation characterized by the clinical triad of intractable seizures, psychomotor regression, and liver failure. The hepatic manifestation usually occurs late in the disease's course, but in some references, hepatitis was reportedly the first manifestation. Liver transplantation was considered contraindicated in Alpers-Huttenlocher syndrome due to its poor prognosis. We acknowledged a patient with the first manifestation of the disease being hepatic failure who eventually underwent liver transplantation, and whose neurological outcome improved after cocktail therapy.