• Title/Summary/Keyword: Mitochondrial ATPase

Search Result 47, Processing Time 0.022 seconds

Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

  • Yoon, Mi Na;Kim, Dong Kwan;Kim, Se Hoon;Park, Hyung Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.233-239
    • /
    • 2017
  • Intracellular calcium ($Ca^{2+}$) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide ($H_2O_2$) on intracellular $Ca^{2+}$ accumulation in mouse pancreatic acinar cells. Perfusion of $H_2O_2$ at $300{\mu}M$ resulted in additional elevation of intracellular $Ca^{2+}$ levels and termination of oscillatory $Ca^{2+}$ signals induced by carbamylcholine (CCh) in the presence of normal extracellular $Ca^{2+}$. Antioxidants, catalase or DTT, completely prevented $H_2O_2$-induced additional $Ca^{2+}$ increase and termination of $Ca^{2+}$ oscillation. In $Ca^{2+}$-free medium, $H_2O_2$ still enhanced CCh-induced intracellular $Ca^{2+}$ levels and thapsigargin (TG) mimicked $H_2O_2$-induced cytosolic $Ca^{2+}$ increase. Furthermore, $H_2O_2$-induced elevation of intracellular $Ca^{2+}$ levels was abolished under sarco/endoplasmic reticulum $Ca^{2+}$ ATPase-inactivated condition by TG pretreatment with CCh. $H_2O_2$ at $300{\mu}M$ failed to affect store-operated $Ca^{2+}$ entry or $Ca^{2+}$ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, failed to attenuate $H_2O_2$-induced intracellular $Ca^{2+}$ elevation. These results provide evidence that excessive generation of $H_2O_2$ in pathological conditions could accumulate intracellular $Ca^{2+}$ by attenuating refilling of internal $Ca^{2+}$ stores rather than by inhibiting $Ca^{2+}$ extrusion to extracellular fluid or enhancing $Ca^{2+}$ mobilization from extracellular medium in mouse pancreatic acinar cells.

Effect of Heat Shock Protein 72 on the Generation of Reperfusion Arrhythmias

  • Chang, Moon-Jun;Na, Heung-Sik;Nam, Hyun-Jung;Pyun, Kyung-Sik;Hong, Seung-Kil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.319-324
    • /
    • 2000
  • The causal relationship between heat shock protein (HSP) and second window of cardioprotective effect is still undetermined. In the present study, we assessed whether HSP-producing substances, amphetamine and ketamine, afforded protection against reperfusion-induced ventricular fibrillation (VF) and these protective effect remained after the inhibition of HSP72 production by quercetin, a mitochondrial ATPase inhibitor. Adult mongreal male cats $(n=60,\;2.5{\sim}4\;kg)$ were used in this study. Experimental animals were divided into five groups; control group (n=15), amphetamine ('A', n=11) group, ketamine ('K', n=9) group, amphetamine-ketamine ('AK', n=16) group and amphetamine-ketamine-quercetin ('AKQ', n=9) group. Twenty-four hours after the drug treatment, an episode of 20-min coronary artery occlusion was followed by 10-min reperfusion. The incidence of reperfusion-induced VF in the AK and AKQ groups was significantly lower than that in control group (p<0.01). After the ischemia/reperfusion procedure, western blot analysis of HSP72 expression in the myocardial tissues resected from each group was performed. HSP72 production in the AK group was marked, whereas HSP72 was not detected in the AKQ and control groups. These results suggest that the suppressive effect against reperfusion-induced VF induced by amphetamine and ketamine is not mediated by myocardial HSP72 production but by other mechanisms.

  • PDF

Early potential effects of resveratrol supplementation on skeletal muscle adaptation involved in exercise-induced weight loss in obese mice

  • Sun, Jingyu;Zhang, Chen;Kim, MinJeong;Su, Yajuan;Qin, Lili;Dong, Jingmei;Zhou, Yunhe;Ding, Shuzhe
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.200-205
    • /
    • 2018
  • Exercise and resveratrol supplementation exhibit anti-obesity functions in the long term but have not been fully investigated yet in terms of their early potential effectiveness. Mice fed with high-fat diet were categorized into control (Cont), exercise (Ex), resveratrol supplementation (Res), and exercise combined with resveratrol supplementation (Ex + Res) groups. In the four-week period of weight loss, exercise combined with resveratrol supplementation exerted no additional effects on body weight loss but significantly improved whole-body glucose and lipid homeostasis. The combined treatment significantly decreased intrahepatic lipid content but did not affect intramyocellular lipid content. Moreover, the treatment significantly increased the contents of mtDNA and cytochrome c, the expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and its downstream transcription factors, and the activities of ATPase and citrate synthase. However, exercise, resveratrol, and their combination did not promote myofiber specification toward slow-twitch type. The effects of exercise combined with resveratrol supplementation on weight loss could be partly due to enhanced mitochondrial biogenesis and not to fiber-type shift in skeletal muscle tissues.

Development of transgenic disease-resistance root stock for growth of watermelon.(oral)

  • S.M. Cho;Kim, J.Y.;J.E. Jung;S.J. Mun;S.J. Jung;Kim, K.S.;Kim, Y.C.;B.H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.65.2-65
    • /
    • 2003
  • To protect the plant against several soil-borne pathogens, we are currently constructing disease-resistant transgenic root stock for the growth of cucurbitaceae vegetable plants, watermelon and gourd. We made a watermelon cDNA library from Cladosporium cucumerinum-Infected leaves for substractive hybriazation and differential screening. We isolated the several pathogen inducible cDNA clones, such as caffeoyl-CoA-methyltransferase, LAA induced protein, receptor-like kinase homolog, hydroxyproline-rich glycoprotein, catalase, calmodulin binding protein, mitochondrial ATPase beta subunit, methyl tRNA synthetase and WRKY transcription factors. We previously obtained CaMADS in pepper and galactinol synthase ( CsGolS) in cucumber that were confirmed to be related with disease-resistance. CaMADS and CsGolS2 were transformed into the inbred line 'GO701-2' gourd, the inbred line '6-2-2' watermelon and the Kong-dye watermelon by Agrobacterium tumerfaciens LBA4404. Plant growth regulators (zeatin, BAP and IAA) were used for shoot regeneration and root induction for optimal condition. Putative transgenic plants were selected in medium containing 100mg/L kanamycin and integration of the CaMADS and CsGO/S2 into the genomic DNA were demonstrated by the PCR analysis. We isolated major soil-borne pathogens, such as Monosporascus cannonballus, Didymella bryoniae, Cladosporium cuvumerinum from the cultivation area of watermelon or root stock, and successfully established artificial inoculation method for each pathogen. This work was supported by a grant from BioGreen 21 program, Rural Development Administration, Republic of Korea.

  • PDF

Effect of Exercise Training on Aging Atrophyin Rat Skeletal Muscle III. Effect of Short Term Exercise Training for Senile Rat (흰쥐 골격근의 노화성 위축에 대한 운동훈련의 영향 III.노화 흰쥐에 적용한 단기간의 운동훈련의 영향)

  • 박승한;박원학;정형재
    • Biomedical Science Letters
    • /
    • v.2 no.1
    • /
    • pp.91-108
    • /
    • 1996
  • The present study was designed to examine effect of short term treadmill and weight-training on aging arophy in the rat skeletal muscle. Male rats of 24 months old were used. Each groups included control, treadmill and weight-training for 4 weeks by using treadmill apparatus and body press apparatus. The histo and cytochemical, ultrastructural and stereological changes in senile skeletal muscles of the rat were observed in the present study. During the training period the body weight and muscular weight in all groups remained constant. The volume density of muscle fiber type IIC and IIB were increased, that of type IIA was decreased, but type I remained constant in treadmill-training group. In weight-training rat, the density of type IIA and IIB were increased, both those of type IIC was decreased. But, all changes of muscle fiber type is not significant. Senile control group some usual formation of mild contraction band, liposuscin pigment and muscular splitting were observed. After treadmill-training, histological and ultrastructural changes occurred in the muscle fiber, such as irregularity of the sarcolemma, interfibrillar vacuolization, longitudinal splitting, and widened I-bond. After weight-training, the changes occurred in the trained muscle fiber, such as appearances of many lysosomes and autophagic vacuoles, severe contraction band, and breakup of myofibrils. Histo and cytochemical studies showed that the activities of succinic dehydrogenase and acid phosphatase remained constant, activities of $Mg^{++}$-ATPase decrease with training. Stereological changes were not observed in the volume and numerical density of all subject component, but the surface density of mitochondrial inner membrane was increased with treadmill-training. These experimental results suggested that endurance training during short-term may result in the adaptible response in senile skeletal muscles. On the other side, weight-training is bad for senile skeletal muscle.

  • PDF

The Calcium Release from Cardiac Mitochondria by Sodium and Potassium ($Na^+$$K^+$에 의한 심장근 Mitochondria에서의 $Ca^{++}$ 유리작용)

  • Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.14 no.1_2
    • /
    • pp.1-11
    • /
    • 1978
  • The $Na^+$-and $K^+$-induced $Ca^{++}$ release was measured isotopically by Milipore filter technique in mitochondria isolated from rabbit ventricles. The release of $Ca^{++}$ from mitochondria could be induced by 1-3 mM of $Na^+$ added in incubating medium under the presence of 0.5mM EGTA to prevent the released $Ca^{++}$ from rebinding with mitochondrial membrane. The amount of $Ca^{++}$ released was increased by increasing the concentration of $Na^+$ added. 100mM $K^+$, in itself, did not induce the $Ca^{++}$ release from cardiac mitochondria, the $Na^+$-induced $Ca^{++}$ release, however, was potentiated by the presence of $K^+$. The potentiation of $Na^+$-induced $Ca^{++}$ release by $K^+$ was proportional to the $Na^+/K^+$ ratio presented in the incubating medium. Among the monovalent cations other than $Na^+$, the release of $Ca^{++}$ from cardiac mitochondria was shared only by $Li^+$. The $Na^+$-induced $Ca^{++}$ release could be also observed in the mitochondria isolated from liver and kidney. However, the $Na^+$ sensitivity was somewhat lower in liver and kidney mitochondria than in heart mitochondria. The release of $Ca^{++}$ induced by $Na^+$ in the mitochondria isolated from the experimentally produced failured heart was not different from that in the normal heart mitochondria, and was not directly modified by $10^{-6}{\sim}10^{-5}$ M of Ouabain. From the experiments, it was suggested that the $Ca^{++}$ released from mitochondria by $Na^+$ could be used in excitation-contraction coupling process to initiate the contraction of the cardiac myofibrils. Futhermore, it appeared that the phenomenon of $Ca^{++}$ release from cardiac mitochondria by $Na^+$ and $K^+$ might be related to the inotropic effect of digitalis glycoside which could bring about the increase of $Na^+$ or the reduction of $K^+$ intracellulary through the inhibition of $Na^+$, $K^+$-ATPase.

  • PDF

Effect of Exercise Training on Aging Atrophy in Rat Skeletal Muscle II. Effect of Long Term Weight-Training (흰쥐 골격근의 노화성 위축에 대한 운동훈련의 영향 - II. 장기간에 걸친 체중부하 훈련의 영향 -)

  • Park, Sung-Han;Park, Won-Hark;Lee, Yong-Deok;Kim, Jung-Ki
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.26-51
    • /
    • 1995
  • The present study was designed to examine effect of long term weight-training on aging atrophy in the rat skeletal muscle. Male rats of 8, 15, and 24 month old were used. Each age groups included control and weight-training for 5 months by using body press apparatus. The histo- and cytochemical, ultrastructural and stereological changes in aging skeletal muscles of the rat were observed in the present study. During the training period the body weight and muscular weight in all groups except the rectus femoris and the gastrocnemius in young age groups remained constant, but muscular weights were increased in the rectus femoris and the gastrocnemius muscles in young age groups. In trained rat, the volume density of muscle fiber type IIA and IIB were increased, but those of type IIC was decreased. Type I remained constant in 8 and 15 month old age groups, but reduced in the tibialis anterior and the gastrocnemius muscles in the 24 month old groups. Some histotological and ultrastructural changes associated with age were found: numerical increase of cytiplasmic vacuoles, lysosomes, lipofuscins, and irregularity of myofibrils. At 24 month old groups some unusual formation of contraction band and muscle splitting were observed. After weight-training, ultrastructural degenerative changes occured in the type I muscle fiber, such as splitting of muscle fiber, disorganization of myofilaments, swelling of mitochondria, accumulation of many lipid droplets, appearance of many lysosomes and residual bodies and necrotic fibers, in the old age groups. But, in the type II muscle fibers hypertrophy of muscle fiber appeared without any noticible damage as the type I. The activities of $Mg^{++}$ -ATPase decreased with age and this enzyme activities in the trained rat were significantly decreased with age. Activities of the acid phosphatase were increased with age and significantly in the trained rat. In stereological analysis, volume density of the myofibrils and the tubular system were increased, on the other hand there mitochondrial capacity was decreased. These experimental results suggested that old rats are not susceptible to be affected by weight-training as young rats, and that physical capacity of the rats must be considered when old rats are exercised for training.

  • PDF