• 제목/요약/키워드: Mitochondrial ATP-sensitive potassium channel

검색결과 6건 처리시간 0.025초

The Role of Mitochondrial ATP-sensitive Potassium Channel on Intestinal Pacemaking Activity

  • Kim, Byung-Joo;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.209-213
    • /
    • 2005
  • Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. In the present study, we investigated the effect of mitochondrial ATP-sensitive potassium (mitoKATP) channel on pacemaking activity in cultured ICCs from murine small intestine by using whole-cell patch clamp techniques. Under current clamp mode, at 10μM glibenclamide, there was no change in pacemaking activity of ICCs. At $30{\mu}M$ glibenclamide, an inhibitor of the ATP sensitive $K^+$ channels, we could find two examples. If pacemaking activity of ICCs was irregulating, pacemaking activity of ICCs was changed into regulating and if in normal conditions, membrane potential amplitude was increased. At $50{\mu}M$ glibenclamide, the resting membrane potential was depolarized. At 3mM 5-HDA, an inhibitor of the mitoKATP channels, inhibited the pacemaking activity of ICCs. Both the amplitude and the frequency were decreased. At 5 mM 5-HDA, both the amplitude and the frequency were completely abolished. Diazoxide, an opener of the mitoKATP channels, was applied to examine its effect on pacemaking activity of ICCs. At $50{\mu}M$ concentration, the pacemaking activity of ICCs was inhibited. Both the amplitude and the frequency were decreased. At 1 mM concentration, both the amplitude and the frequency were completely abolished and the resting membrane potential was shaked.These results indicate that mitoKATP channel has an important role in pacemaking activity of ICCs.

Protein Kinase C Activates ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Youm, Jae-Boum;Joo, Hyun;Kim, Hyung-Kyu;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.187-193
    • /
    • 2005
  • Several signal transduction pathways have been implicated in ischemic preconditioning induced by the activation of ATP-sensitive $K^+$ $(K_{ATP})$ channels. We examined whether protein kinase C (PKC) modulated the activity of $K_{ATP}$ channels by recording $K_{ATP}$ channel currents in rabbit ventricular myocytes using patch-clamp technique and found that phorbol 12,13-didecanoate (PDD) enhanced pinacidil-induced $K_{ATP}$ channel activity in the cell-attached configuration; and this effect was prevented by bisindolylmaleimide (BIM). $K_{ATP}$ channel activity was not increased by $4{\alpha}-PDD$. In excised insideout patches, PKC stimulated $K_{ATP}$ channels in the presence of 1 mM ATP, and this effect was abolished in the presence of BIM. Heat-inactivated PKC had no effect on channel activity. PKC-induced activation of $K_{ATP}$ channels was reversed by PP2A, and this effect was not detected in the presence of okadaic acid. These results suggest that PKC activates $K_{ATP}$ channels in rabbit ventricular myocytes.

Detection of Mitochondrial ATP-Sensitive Potassium Channels in Rat Cardiomyocytes

  • Cuong, Dang Van;Kim, Na-Ri;Kim, Eui-Yong;Lee, Young-Suk;Kim, Hyun-Ju;Kang, Sung-Hyun;Hur, Dae-Young;Joo, Hyun;Park, Young-Shik;Hong, Yong-Geun;Lee, Sang-Kyung;Chung, Joon-Yong;Seog, Dae-Hyun;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.201-206
    • /
    • 2004
  • Mitochondrial ATP-sensitive potassium $(mitoK_{ATP})$ channels play a role in early and late ischemic preconditioning. Nevertheless, the subunit composition of $mitoK_{ATP}$ channels remains unclear. In this study, we investigated the subunit composition of $mitoK_{ATP}$ channels in mitochondria isolated from rat cardiac myocytes. Mitochondria were visualized using the red fluorescence probe, Mitrotracker Red, while $mitoK_{ATP}$ channels were visualized using the green fluorescence probe, glibenclamide-BODIPY. The immunofluorescence confocal microscopy revealed the presence of Kir6.1, Kir6.2 and SUR2 present in the cardiac mitochondria. Western blot analysis was carried to further investigate the nature of $mitoK_{ATP}$ channels. For SUR proteins, a 140-kDa immunoreactive band that corresponded to SUR2, but no SUR1 was detected. For Kir6.2, three bands $({\sim}44,\;{\sim}46,\;and\;{\sim}30\;kDa)$ were detected, and a specific ${\sim}46-kDa$ immunoreactive band corresponding to Kir6.1 was also observed. These observations suggest that the subunits of $mitoK_{ATP}$ channels in rat myocytes include Kir6.1, Kir6.2, and a SUR2-related sulfonylurea-binding protein.

BMS-191095, a Cardioselective Mitochondrial $K_{ATP}$ Opener, Inhibits Human Platelet Aggregation by Opening Mitochondrial $K_{ATP}$ Channels

  • Cho Mi-Ra;Park Jung-Wook;Jung In-Sang;Yi Kyu-Yang;Yoo Sung-Eun;Chung Hun-Jong;Yun Yeo-Pyo;Kwon Suk-Hyung;Shin Hwa-Sup
    • Archives of Pharmacal Research
    • /
    • 제28권1호
    • /
    • pp.61-67
    • /
    • 2005
  • We evaluated the antiplatelet effects of two classes of ATP-sensitive potassium channel openers $(K_{ATP}\;openers)$ on washed human platelets, and the study's emphasis was on the role of mitochondrial $K_{ATP}$ in platelet aggregation. Collagen-induced platelet aggregation was inhibited in a dose dependent manner by lemakalim and SKP-450, which are potent cardio-nonselective $K_{ATP}$ openers, and also by cardioselective BMS-180448 and BMS-191095 $(IC_{50}\;:\;1,130,\;>\;1,500,\;305.3\;and\;63.9\;{\mu}M,\;respectively)$, but a significantly greater potency was noted for the cardioselective $K_{ATP}$ openers. The latter two $K_{ATP}$ openers also inhibited platelet aggregation induced by thrombin, another important blood-borne platelet activator, with similar rank order of potency $(IC_{50}\;:\;498.0\;and\;104.8{\mu}M\; for\;BMS-180448\;and\;BMS-191095,\;respectively)$. The inhibitory effects of BMS-191095 on collagen-induced platelet aggregation were significantly blocked by a 30-min pretreatment of platelets with glyburide $(1{\mu}M)$ or sodium 5-hydroxyde­canoate$(5-HD,\;100{\mu}M)$, a nonselective and selective mitochondrial $K_{ATP}$ antagonist, respectively, at similar magnitudes; this indicates the role of mitochondrial $K_{ATP}$ in the antiplatelet activity of BMS-191095. However, glyburide and 5-HD had no effect when they were added to the platelet cuvette immediately prior to the addition of BMS-191095. These findings indicate that cardioselective mitochondrial $K_{ATP}$ openers like BMS-191095 are able to exert cardioprotective effects in cardiac ischemia/reperfusion injury via dual mechanisms directed at the inhibition of platelet aggregation and the protection of cardiomyocytes, and both these mechanisms are mediated by mitochondrial$K_{ATP}$.

Introduction of Heterocycles at the 2-Position of Indoline as Ester Bioisosteres

  • Lee, Sung-Kyung;Yi, Kyu-Yang;Yoo, Sung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.207-212
    • /
    • 2004
  • In this study, we attempted to prepare compounds with heterocyclic replacements for metabolically unstable esters of benzopyranyl indole-2-carboxylic esters, which showed good in vitro and in vivo cardioprotective efficacies possibly through the opening of mitochondrial ATP-sensitive potassium channel ($K_{ATP}$). Initially, we tried to construct indolin-2-yl-heterocycles using unprotected indoline-2-carboxylic acid, but the cyclization was proceeded with oxidation of the indoline ring to the indole, which didn't react with benzopyranyl epoxide. Thus we introduced N-Boc group to deplete the electron density of the indoline ring. We successfully prepared various indolin-2-yl-heterocycles by the cyclization of the building blocks including carboxamide, ${\beta}$-hydroxy amide, hydrazide, nitrile starting from N-Boc-indoline-2-carboxylic acid.

망막 색소상피세포에서 산화성 세포 손상과 미토콘드리아기능 저해에 미치는 NS 1619의 보호 효과 (The Ca2+-activated K+ (BK) Channel-opener NS 1619 Prevents Hydrogen Peroxide-induced Cell Death and Mitochondrial Dysfunction in Retinal Pigment Epithelial Cells)

  • 강재훈;우재석
    • 생명과학회지
    • /
    • 제27권11호
    • /
    • pp.1349-1356
    • /
    • 2017
  • $K^+$ 통로 개방제들은 심근, 뇌, 골격근 등에서 세포막 혹은 미토콘드리아 내막에 존재하는 큰 전도성의 $Ca^{2+}$-의 존성 $K^+$ (BK) 통로 및 ATP-조절성 $K^+$ 통로(ATP-sensitive $K^+$ channels, $K_{ATP}$)에 작용하여 허혈성 혹은 산화성 세포 손상을 완화하는 효과가 있는 것으로 보고되어 있다. 본 연구에서는 망막 색소 상피세포주인 ARPE-19 세포를 실험 모델로 하여 큰 전도성의 BK 통로 개방제인 NS 1619가 유사한 보호 효과를 나타낼 수 있는지, 또한 그 작용기전이 무엇인지를 확인하고자 하였다. AREE-19 세포를 여러 형태의 산화 스트레스에 노출시켜 세포 손상을 유발하고 그 손상의 정도 및 이에 미치는 NS 1619의 효과를 trypan blue 배출능, Tunel 염색 분석을 통하여 측정하였다. NS 1619는 여러 형태의 산화 스트레스에 의한 괴사성 및 apoptosis에 의한 세포 손상을 효과적으로 방지하였으며 그 보호 효과는 BK 통로 봉쇄제인 paxilline 의해 차단되었다. NS 1619는 $H_2O_2$에 의한 세포내 ATP 고갈을 현저히 완화시켰으며, 또한 MTT 환원능으로 측정한 미토콘드리아의 기능을 보호하는 효과를 보였다. 유세포형광 분석법을 이용한 실험에서 NS 1619는 $H_2O_2$에 의한 미토콘드리아 막전압의 소실을 유의하게 방지하였다. 이상의 결과들을 종합하면 NS 1619는 망막 색소 상피세포에서 산화성 세포 손상을 방지하는 효과를 나타내며 그 기전에 미토콘드리아 기능에 대한 보호 작용이 연관되어 있는 것으로 사료된다.