• Title/Summary/Keyword: Mitochondria complex

검색결과 178건 처리시간 0.02초

Structural basis of Ca2+ uptake by mitochondrial calcium uniporter in mitochondria: a brief review

  • Jiho, Yoo
    • BMB Reports
    • /
    • 제55권11호
    • /
    • pp.528-534
    • /
    • 2022
  • Mitochondria are cellular organelles that perform various functions within cells. They are responsible for ATP production, cell-signal regulation, autophagy, and cell apoptosis. Because the mitochondrial proteins that perform these functions need Ca2+ ions for their activity, mitochondria have ion channels to selectively uptake Ca2+ ions from the cytoplasm. The ion channel known to play the most important role in the Ca2+ uptake in mitochondria is the mitochondrial calcium uniporter (MCU) holo-complex located in the inner mitochondrial membrane (IMM). This ion channel complex exists in the form of a complex consisting of the pore-forming protein through which the Ca2+ ions are transported into the mitochondrial matrix, and the auxiliary protein involved in regulating the activity of the Ca2+ uptake by the MCU holo-complex. Studies of this MCU holo-complex have long been conducted, but we didn't know in detail how mitochondria uptake Ca2+ ions through this ion channel complex or how the activity of this ion channel complex is regulated. Recently, the protein structure of the MCU holo-complex was identified, enabling the mechanism of Ca2+ uptake and its regulation by the MCU holo-complex to be confirmed. In this review, I will introduce the mechanism of action of the MCU holo-complex at the molecular level based on the Cryo-EM structure of the MCU holo-complex to help understand how mitochondria uptake the necessary Ca2+ ions through the MCU holo-complex and how these Ca2+ uptake mechanisms are regulated.

미토콘드리아 의학과 연구동향 (Mitochondria Medicine and its Research Trend)

  • 심은보
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권5호
    • /
    • pp.355-361
    • /
    • 2009
  • Mitochondria play a key role in maintaining life by producing ATP and heat. Recent researches have demonstrated that degenerative diseases such as heart failure, obesity/diabetes, cardiovascular disease, and psychiatric diseases are accompanied by mitochondria dysfunction. In this sense, mitochondria medicine considers the significance of mitochondria in human pathology and tries to explain degenerative diseases as a fatal consequence of mitochondria dysfunction. Here, I introduce the fundamentals of mitochondria physiology and present examples showing the relationship between mitochondria dysfunction and chronic complex diseases. Although mitochondria medicine uses a molecular biological approach predominantly, a biomedical engineering approach might play a critical role in unveiling the complexity of mitochondria medicine and in its application to the diagnosis and treatment of chronic diseases. Thus, I also briefly review the prospects of research using biomedical engineering methods.

Temporal changes in mitochondrial activities of rat heart after a single injection of iron, including increased complex II activity

  • Kim, Mi-Sun;Song, Eun-Sook
    • Animal cells and systems
    • /
    • 제14권2호
    • /
    • pp.91-98
    • /
    • 2010
  • Male rats were given a single injection of iron, and temporal changes in iron content and iron-induced effects were examined in heart cellular fractions. Over a period of 72 h, the contents of total and labile iron, reactive oxygen species, and NO in tissue homogenate, nuclear debris, and postmitochondrial fractions were mostly constant, but in mitochondria they continuously increased. An abrupt decrease in membrane potential and NAD(P)H at 12 h was also found in mitochondria. The respiratory control ratio was reduced slowly with a slight recovery at 72 h, suggesting uncoupling by iron.While the ATP content of tissue homogenate decreased steadily until 72 h, it showed a prominent increase in mitochondria at 12 h. Total iron and calcium concentration also progressively increased in mitochondria over 72 h. Enzyme activity of the oxidative phosphorylation system was significantly altered by iron injection: activities of complexes I, III, and IV were reduced considerably, but complex II activity and the ATPase activity of complex V were enhanced. A reversal of activity in complexes I and II at 12 h suggested reverse electron transfer due to iron overload. These results support the argument that mitochondrial activities including oxidative phosphorylation are modulated by excessive iron.

미토콘드리아내 결정함유물의 미세구조 및 면액황금표식법 (Fine Structure and Immunogoldlabeling of Crystalline Inclusion Bodies in Mitochondria)

  • 김수진;이근옥
    • 한국동물학회지
    • /
    • 제31권1호
    • /
    • pp.62-70
    • /
    • 1988
  • 미토콘드리아가 포함하고있는 결정한유물의 미새구조와 면역황금표식법에 의한 분석을 위하여 우심근 세포의 미토콘드리아에서 전자전달체에 관여하는 효소를 분리하였다. 우심근 미토콘드리아에서 분리된 효소는 실험토끼에 주사하여 (복합체I,NADH-conezyme Q reductase; 복합체 III,Ubiquinol-cytochrome-c-oxldoreductase; 복합체 IV, Cytochrome-c-oxidase)들에 대한 면역항체를 얻었다. 이들 면역항체들은 우심근과 정상인의 골격근 미토콘드리아와 미토콘드리아에 결정함유물을 포함하는 mitochondrical myopathy환자의 골격근 미토콘드리아에 반응시켜 황금입자를 표식하고 전자현미경을 이용하여 이들 면역항체반응을 관찰하였다. 미토콘드리아가 포함하는 결정함유물의 미세구조에는 paracrystalline inclusions body와 multilamellar strudure inclusion body그리고 구형결정함유물(globular crystalline inclusions body) 및 윤형구조 (whirl shaped structure)의 크리스테 중심에 있는 구형결정함유물 등의 4종류로관찰되었다. 복합체 I,복합체 Iv의 효소에 대한 항체를 우심근과 정상인 골격근 그리고 mitochondrical myopathy환자의 골격근에 동일한 면역반응을 시켰을때 미토콘드리아 크리스테에 부착하는 황금입자의 표식 정도는 각각의 근조직에서 유사한 반응이 관찰되었다. 복합체 III의 효소에 대한 항체는 우심근과 정상인의 골격근에서는 유사한 반응이 나타났으나 mitochondrical myopathy환자의 골격근에서는 극히 소수의 황금입자가 관찰되었다. 구형결정함유물은 복합체 I,III,IV의 3종류의 효소에 대한 면역반응 결과 황금입자표식은 관찰되지 않았다. 따라서 mitochondrical myopathy환자의 미토콘드리아에는 복합에 III의 효소가 결핍되었으며 구형결정함유물은 전자전달체 효소들인 복합체 I,III,Iv 효소단백질과는 상관없는 물질로 생각된다.

  • PDF

Propamidine decreas mitochondrial complex III activity of Botrytis cinerea

  • Wu, Fangli;Jin, Weibo;Feng, Juntao;Chen, Anliang;Ma, Zhiqing;Zhang, Xing
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.614-621
    • /
    • 2010
  • Propamidine, an aromatic diamidine compound, is widely used as an antimicrobial agent. To uncover its mechanism on pathogenetic fungi, Botrytis cinerea as an object was used to investigate effects of propamidine in this paper. The transmission electron microscope results showed that the mitochondrial membranes were collapsed after propamidine treatment, followed that mitochondria were disrupted. Inhibition of whole-cell and mitochondrial respiration by propamidine suggested that Propamidine is most likely an inhibitor of electron transport within Botrytis cinerea mitochondria. Furthermore, the mitochondrial complex III activity were inhibited by propamidine.

생쥐 간세포 Mitochondria의 전자전달계에 미치는 Chromium(VI)의 영향 (Effetcs of Hexavalent Chromium on the Mitochondrial Electron Transport System in Mouse Liver)

  • 부문종;유창규;최임순
    • Applied Microscopy
    • /
    • 제17권1호
    • /
    • pp.29-46
    • /
    • 1987
  • To study hexavalent chromium effects on mitochondrial electron transport, the activities of electron transport enzymes and conformational change of mitochondria treated with $40{\mu}M$ of sodium dichromate ($Na_{2}Cr_{2}O_{7}\;2H_{2}O$) were investigated. And so were those of liver mitochondria isolated from mouse intraperitoneally injected with sodium dichromate, 40mg per kg body weight. On both treatment with chromium(VI), the activities of electron transfer enzymes (Complex I and IV) were increased to some extent and the ultrastructural transformation of mitochondria from a condensed to an orthodox conformation was inhibited under State IV respiration. These results represent' inhibitory effect of hexavalent chromium on electron transport without inhibiting electron transfer enzymes (Complex I and IV) in mitochondria. On intraperitoneal treatment with hexavalent chromium as sodium dichromate and trivalent chromium as chromic chloride, containing 37.5 mg of chromium per kg body weight, respectively, the activities of electron transfer enzymes of liver isolated from mouse with chromium(VI) was reduced, but that with chromium(III) was not affected. And with chromium(VI), all mice after 12 hours of treatment died, only after 6 hours survived. With chromium(III), however, all survived. This indicates that hexavalent chromium is more toxic than trivalent chromiumin mouse liver.

  • PDF

Redox Regulation of Apoptosis before and after Cytochrome C Release

  • Chen, Quan;Crosby, Meredith;Almasan, Alex
    • Animal cells and systems
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 2003
  • Programmed cell death, or apoptosis, is one of the most studied areas of modern biology. Apoptosis is a genetically regulated process, which plays an essential role in the development and homeostasis of higher organisms. Mitochondria, known to play a central role in regulating cellular metabolism, was found to be critical for regulating apoptosis induced under both physiological and pathological conditions. Mitochondria are a major source of reactive oxygen species (ROS) but they can also serve as its target during the apoptosis process. Release of apoptogenic factors from mitochondria, the best known of which is cytochrome c, leads to assembly of a large apoptosis-inducing complex called the apoptosome. Cysteine pretenses (called caspases) are recruited to this complex and, following their activation by proteolytic cleavage, activate other caspases, which in turn target for specific cleavage a large number of cellular proteins. The redox regulation of apoptosis during and after cytochrome c release is an area of intense investigation. This review summarizes what is known about the biological role of ROS and its targets in apoptosis with an emphasis on its intricate connections to mitochondria and the basic components of cell death.

Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans

  • Kwon, Sujeong;Kim, Eun Ji E.;Lee, Seung-Jae V.
    • BMB Reports
    • /
    • 제51권6호
    • /
    • pp.274-279
    • /
    • 2018
  • Mitochondria are crucial organelles that generate cellular energy and metabolites. Recent studies indicate that mitochondria also regulate immunity. In this review, we discuss key roles of mitochondria in immunity against pathogen infection and underlying mechanisms, focusing on discoveries using Caenorhabditis elegans. Various mitochondrial processes, including mitochondrial surveillance mechanisms, mitochondrial unfolded protein response ($UPR^{mt}$), mitophagy, and reactive oxygen species (ROS) production, contribute to immune responses and resistance of C. elegans against pathogens. Biological processes of C. elegans are usually conserved across phyla. Thus, understanding the mechanisms of mitochondria-mediated defense responses in C. elegans may provide insights into similar mechanisms in complex organisms, including mammals.

The Effect of Melatonin on Mitochondrial Function in Endotoxemia Induced by Lipopolysaccharide

  • Liu, Jing;Wu, Fengming;Liu, Yuqing;Zhang, Tao;Tang, Zhaoxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권6호
    • /
    • pp.857-866
    • /
    • 2011
  • This study examined the metabolism of free radicals in hepatic mitochondria of goats induced by lipopolysaccharide (LPS), and investigated the effects of melatonin (MT). Forty-eight healthy goats ($10{\pm}1.2\;kg$) were randomly selected and divided into four groups: saline control, LPS, MT+LPS and MT. The goats within each group were3 sacrificed either 3 or 6 h after treatment and the livers removed to isolate mitochondria. The respiration control ratio (RCR), the ADP:O ratio, the oxidative phosphorylation ratio (OPR), the concentration of $H_2O_2$ and the activities of Complex I-IV were determined. The mitochondrial membrane potential ($\Delta\psi_m$) was analyzed by flow cytometry. The results showed that RCR, O/P and OPR of the LPS group decreased (p<0.05), as well as activities of respiratory complexes, whereas the generation of $H_2O_2$ in Complex III increased (p<0.05) after 3 h, while Complex II and III increased after 6 h. Also, it was found that the mitochondrial membrane potential of the LPS group declined (p<0.05). However, pre-treatment with MT attenuated the injury induced by LPS, which not only presented higher (p<0.05) RCR, O/P, OPR, and respiratory complex activities, but also maintained the $\Delta\psi_m$. Interestingly, it is revealed that, in the MT+LPS group, the generation of $H_2O_2$ increased firstly in 3 h, and then significantly (p<0.05).decreased after 6 h. In the MT group, the function of mitochondria, the transmenbrane potential and the generation of $H_2O_2$ were obviously improved compared to the control group. Conclusion: melatonin prevents damage caused by LPS on hepatic mitochondria of goats.

국소마취제가 Mitochondria에서의 전자이동 및 Superoxide Radicals의 생성에 미치는 영향 (Effects of Local Anesthetics on Electron Transport and Generation of Superoxide Radicals in Mitochondria)

  • 이정수;신용규;이광수
    • 대한약리학회지
    • /
    • 제23권2호
    • /
    • pp.113-121
    • /
    • 1987
  • 국소마취제가 mitochondria에서의 전자이동 및 superoxide라디칼의 생성 그리고 지질의 과산화에 따른 malondialdehyde생성에 미치는 영향을 관찰하였다. 국소마취제는 전자이동계 의 효소활성도에 영향을 나타내었다. NADH dehydrogenase, NADH oxidase와 NADH-ubiquinone oxidoreductase의 활성도는 lidocaine, procaine과 dibucaine에 의하여 효과적으로 억제되었고 cocaine에 의하여 약간 억제되었다. Succinate dehydrogenase, succinate cytochrome c oxidoreductase와 succinate-ubiquinone oxidoreductase 활성도는 lidocaine 과 dibucaine에 의하여 억제되었으나 succinate oxidase는 국소마취제에 의하여 활성화되었다. 국소마취제는 dihydroubiquinone-cytochrome c oxidoreducatse와 cytochrome c oxidase의 활성도를 억제하였다. 이와 같은 반응에서 국소마취제에 대한 complex I segment의 반응이 다른 complex segment보다 크게 나타났다. 국소마취제는 succinate 또는 NADH에 의한 superoxide 생성과 이에 대한 antimycin의 자극효과를 억제하였다. 또한 국소마취제는 산소라디칼에 의한 지질의 과산화를 억제하였다. 이상의 결과로부터 국소마취제는 mitochondria의 전자전달 과정 중 Complex I segment때 또는 인접한 부위에 작용하여 전자이동을 억제함으로써 superoxide 생성과 지질의 과산화를 억제할 것으로 시사되었다.

  • PDF