• Title/Summary/Keyword: Mitigate Congestion

Search Result 38, Processing Time 0.024 seconds

CCDC: A Congestion Control Technique for Duty Cycling WSN MAC Protocols

  • Jang, Beakcheol;Yoon, Wonyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3809-3822
    • /
    • 2017
  • Wireless Sensor Networks hold the limelight because of significant potential for distributed sensing of large geographical areas. The radio duty cycling mechanism that turns off the radio periodically is necessary for the energy conservation, but it deteriorates the network congestion when the traffic load is high, which increases the packet loss and the delay too. Although many papers for WSNs have tried to mitigate network congestion, none of them has mentioned the congestion problem caused by the radio duty cycling of MAC protocols. In this paper, we present a simple and efficient congestion control technique that operates on the radio duty cycling MAC protocol. It detects the congestion by checking the current queue size. If it detects the congestion, it extends the network capacity by adding supplementary wakeup times. Simulation results show that our proposed scheme highly reduces the packet loss and the delay.

A Study on Mitigation of Container Terminal Congestion under IoT Environment (IoT 환경에서 컨테이너 터미널 혼잡도 완화방안 연구)

  • Lee, Jang-Kun;Shin, Jae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.57-58
    • /
    • 2018
  • As interest in the Internet of Things increases, technologies are being studied to handle information exchanged between things using the Internet of Things. Specially, as container terminals are automated, the use of the Internet of Things in the terminals increases and varies. However, the use of the Internet of Things to enhance the efficiency of the container terminal operation is insufficient. Currently, the container terminal shows that the arrival pattern of the external truck is concentrated at a particular time. This resuls in gate congestion and affects the waiting times of the truck. The damage is caused by environmental pollution problems and social problems in neighboring port areas. Therefore, in this thesis, we will analyze the causes of the external truck's waiting time problems affecting the gate congestion at container terminals and study methods to mitigate congestion under Internet of Things environment.

  • PDF

Real-Time Road Traffic Management Using Floating Car Data

  • Runyoro, Angela-Aida K.;Ko, Jesuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.269-276
    • /
    • 2013
  • Information and communication technology (ICT) is a promising solution for mitigating road traffic congestion. ICT allows road users and vehicles to be managed based on real-time road status information. In Tanzania, traffic congestion causes losses of TZS 655 billion per year. The main objective of this study was to develop an optimal approach for integrating real-time road information (RRI) to mitigate traffic congestion. Our research survey focused on three cities that are highly affected by traffic congestion, i.e., Arusha, Mwanza, and Dar es Salaam. The results showed that ICT is not yet utilized fully to solve road traffic congestion. Thus, we established a possible approach for Tanzania based on an analysis of road traffic data provided by organizations responsible for road traffic management and road users. Furthermore, we evaluated the available road information management techniques to test their suitability for use in Tanzania. Using the floating car data technique, fuzzy logic was implemented for real-time traffic level detection and decision making. Based on this solution, we propose a RRI system architecture, which considers the effective utilization of readily available communication technology in Tanzania.

A Robust Transport Protocol Based on Intra-Cluster Node Density for Wireless Sensor Networks (무선 센서 네트워크를 위한 클러스터 내 노드 밀도 기반 트랜스포트 프로토콜)

  • Baek, Cheolheon;Moh, Sangman
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.381-390
    • /
    • 2015
  • The efficient design of a transport protocol contributes to energy conservation as well as performance improvement in wireless sensor networks (WSNs). In this paper, a node-density-aware transport protocol (NDTP) for intra-cluster transmissions in WSNs for monitoring physical attributes is proposed, which takes node density into account to mitigate congestion in intra-cluster transmissions. In the proposed NDTP, the maximum active time and queue length of cluster heads are restricted to reduce energy consumption. This is mainly because cluster heads do more works and consume more energy than normal sensor nodes. According to the performance evaluation results, the proposed NDTP outperforms the conventional protocol remarkably in terms of network lifetime, congestion frequency, and packet error rate.

NetDraino: Saving Network Resources via Selective Packet Drops

  • Lee, Jin-Kuk;Shin, Kang-G.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-55
    • /
    • 2007
  • Contemporary end-servers and network-routers rely on traffic shaping to deal with server overload and network congestion. Although such traffic shaping provides a means to mitigate the effects of server overload and network congestion, the lack of cooperation between end-servers and network-routers results in waste of network resources. To remedy this problem, we design, implement, and evaluate NetDraino, a novel mechanism that extends the existing queue-management schemes at routers to exploit the link congestion information at downstream end-servers. Specifically, NetDraino distributes the servers' traffic-shaping rules to the congested routers. The routers can then selectively discard those packets-as early as possible-that overloaded downstream servers will eventually drop, thus saving network resources for forwarding in-transit packets destined for non-overloaded servers. The functionality necessary for servers to distribute these filtering rules to routers is implemented within the Linux iptables and iproute2 architectures. Both of our simulation and experimentation results show that NetDraino significantly improves the overall network throughput with minimal overhead.

Exploring reward efficacy in traffic management using deep reinforcement learning in intelligent transportation system

  • Paul, Ananya;Mitra, Sulata
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.194-207
    • /
    • 2022
  • In the last decade, substantial progress has been achieved in intelligent traffic control technologies to overcome consistent difficulties of traffic congestion and its adverse effect on smart cities. Edge computing is one such advanced progress facilitating real-time data transmission among vehicles and roadside units to mitigate congestion. An edge computing-based deep reinforcement learning system is demonstrated in this study that appropriately designs a multiobjective reward function for optimizing different objectives. The system seeks to overcome the challenge of evaluating actions with a simple numerical reward. The selection of reward functions has a significant impact on agents' ability to acquire the ideal behavior for managing multiple traffic signals in a large-scale road network. To ascertain effective reward functions, the agent is trained withusing the proximal policy optimization method in several deep neural network models, including the state-of-the-art transformer network. The system is verified using both hypothetical scenarios and real-world traffic maps. The comprehensive simulation outcomes demonstrate the potency of the suggested reward functions.

THE OPPORTUNITIES AND CHALLENGES FOR CONTRACTUAL CONSIDERATION OF CONSTRUCTION-RELATED CARBON EMISSIONS FROM CIVIL INFRASTRUCTURE PROJECTS

  • Changbum Ahn;SangHyun Lee;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.653-658
    • /
    • 2011
  • Construction works of civil infrastructure projects generate a considerable amount of carbon emissions by utilizing a set of energy-intensive equipment and causing traffic congestion. However, the voluntary efforts of the contractor to mitigate these emissions are at an early stage. To address this issue, this paper explores the opportunities to take carbon emissions that would be caused from construction works into consideration in contracting methods and procedures. The opportunities for reducing carbon emissions from construction activities themselves are examined under the framework of Performance Contracting for Construction (PCfC), and carbon emissions from traffic congestion are attempted to be incorporated into the Road User Cost (RUC) calculation. This paper also identifies and discusses major challenges that must be confronted when considering the mitigation of these emissions in contracting methods and procedures.

  • PDF

Evaluation of Freeway Congestion Management Using Mesoscopic Traffic Simulator (Mesoscopic Traffic Simulator를 이용한 고속도로 지정체 관리방안평가)

  • 최기주;이승환
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • Evaluation of Freeway Congestion Management Using Mesoscopic Traffic Simulator A mesoscopic simulation study to measure the effects of trip generation caused by rampant expansion of residential area around the Kyungbu corridor has been conducted. Some alternatives, which seem to be judgememtally plausible and technically feasible to mitigate such congestion, have been carefully examined and evaluated by the simulation model called INTEGRATION. Alternatives are mostly network improvements. Banpo IC dedicated ramp construction (A1), Seocho IC TSM based weaving elimination (A2), dedicated local and express separation over Seocho-Yangjae segment (A3), Heonleung IC (A4) and Daewang If installations (A5), Pangyo IC improvement (A6), Baikhyun IC (A7) and Dongbaek IC installations (A8) along with Shingal-Pangyo segment capacity addition (A9). The most capital intensive ones are A9, A5, and A4 in that order. A1, A6, A7, and A8 are short in distance but they are also capital intensive and need some construction periods. The least capital driven alternatives are h2 and A3, the h2 is easier to do, but A3 needs traffic diversion scheme during construction. The A1, A7, and A8 have been identified cost effective in terms of speed increase and travel time saving. Along with these results, some limitations and future research agenda regarding simulation have also been presented.

  • PDF

A Study on Market Power Mitigation Using Supply Margin Assessment (Supply Margin Assessment를 이용한 도매전력시장의 시장지배력 예방에 관한 연구)

  • Jeong Hae-Seong;Park Jong-Keun;Oh Tae-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.139-143
    • /
    • 2005
  • Several methods have been proposed to mitigate the market power in foreign electricity markets. In this paper, Hirfindahl-Hirschman Index(HHI) and supply margin assessment(SMA) are compared based upon the Korean future markets. The results show that SMA is better than HHI to estimate market power because it can reflect congestion and capacity reserve effectively.

Preliminary Design of a Urban Transit Passenger Guidance System Using Congestion Management Model (혼잡관리 모형을 이용한 도시철도 이용객 동선유도시스템 기본설계)

  • Kim, Kwang-Mo;Park, Hee-Won;Kim, Jin-Ho;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3610-3618
    • /
    • 2015
  • The congestion of railway vehicle and station shows up to 220%. Especially, transfer resistance of passenger increase rapidly by the collision of circulation. So increment of travel time, occurrence of safety accidents act as a factor that inhibits the utilization of urban railway station. In this paper, to improve traveling speed and comfort of urban rail passengers, urban transit passenger guidance system using congestion management model is proposed. The congestion management model that can mitigate a recurring/non-recurring congestion is constructed and the preliminary design of the system (middleware system, control system, guidance drive system) is carried out. Passenger Guidance System is configured by step for changing the external data into a form usable by the algorithm, step to perform the congestion management algorithm using the real-time data and historical data, step to control device based on the value that is calculated by congestion management algorithm, step to drive the device based on the information in the control system and circulation guidance devices. In the future, detail design will be performed based on the preliminary design. A prototype of the various devices according to the station structures and locations will be made. The control module of guidance device will be developed.