• Title/Summary/Keyword: Mission equipment

Search Result 151, Processing Time 0.025 seconds

A Study of the Development Test and Evaluation and Verification Procedure of a Multi-Mission USV, M-Searcher (복합임무 무인수상정의 개발시험평가 및 검증절차에 관한 고찰)

  • Park, hin-Bae;Kim, Won-Jae;Lee, Kurnchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.402-409
    • /
    • 2018
  • This paper describes the plan and procedure of a development test and evaluation that will be performed to verify the performance and technology of multi-mission unmanned surface vehicles (MMUSVs). In order to verify the design requirement of MMUSVs, we designed and manufactured the common platform of MMUSVs, which have an overall length of8.4 m, a displacement of 3,100 kg, and a speed of more than35 kts. The platform is equipped with several sub-systems, including radar and an EOTS/IRS. The EOTS/IRS, along with the search radar, is used for effective detection, identification, and targeting. The core technologies of MMUSV for DT&E will be investigated. The common platform design technologies, remote operating and control system technologies, autonomous navigation technologies, and unmanned operational technology of sensors and equipment will be studied for the development of the MMUSV's core technologies. The system will be able to make precise observations and track targets both manually and automatically during day and night conditions. Currently, the verification tests for each of the technologies and for the integrated system are in the pipeline for DT&E, which will be performed next year. Also, software reliability and life tests will be performed.

On-orbit Thermal Environment Characteristic according to Launch Time of CubeSat STEP Cube Lab-II (초소형위성 STEP Cube Lab-II의 발사시간 변화에 따른 궤도 열환경 특성 분석)

  • Son, Min-Young;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.89-97
    • /
    • 2021
  • STEP Cube Lab-II (Cube Laboratory for Space Technology Experimental Project-II) is a 6U Cube satellite equipped with optical and infrared cameras for monitoring Mt. Paektu volcanic eruption signs and earth observation in the Korean peninsula. To guarantee successful mission operation of the cube satellite in orbit, thermal design is essential for the electronic equipment, and must be kept within the allowable temperature range during the mission period. Thus, it is necessary to analyze the predictable orbital thermal environment. The STEP Cube Lab-II is launched through the KSLV-II, however, the operation orbit has not been determined due to the unknown launch time. In this study, we performed a thermal analysis of the satellite and investigated the heat flux according to launch time to analyze the worst orbital conditions that could occur.

The Modeling of Management Data and Drones Recommendation for Military Operation Support Mission (군 작전지원 임무 수행을 위한 드론 추천 및 관리 데이터 모델링)

  • Park, Keun-Seog;cheon, Sang-pil;Eom, Jung-ho
    • Convergence Security Journal
    • /
    • v.18 no.3
    • /
    • pp.133-140
    • /
    • 2018
  • As the core technology of the 4th Industrial Revolution is applied to drone, the potential for growth in the field of unmanned aerial vehicles is very large, and the utilization of civilian & military fields in the domestic & foreign is increasing rapidly. Because application areas of drone in the civilian field is various, it is excellent in terms of cost effectiveness and high value in utilization when it is used for military operation support mission. Especially, in the case of the Air Force, it is expected that military usage effectiveness will be high if drone replaces various air operations support missions such as aircraft inspection, supply of military supplies, base security. We find out the missions that can utilize drones for military operations support and propose the recommendation and data management plan accordingly. We recommend the most suitable drones and equipment that perform similar missions in the private sector and propose the data modeling of relational database.

  • PDF

Development of Real-time Mission Monitoring for the Korea Augmentation Satellite System

  • Daehee, Won;Koontack, Kim;Eunsung, Lee;Jungja, Kim;Youngjae, Song
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Korea Augmentation Satellite System (KASS) is a satellite-based augmentation system (SBAS) that provides approach procedure with vertical guidance-I (APV-I) level corrections and integrity information to Korea territory. KASS is used to monitor navigation performance in real-time, and this paper introduces the design, implementation, and verification process of mission monitoring (MIMO) in KASS. MIMO was developed in compliance with the Minimum Operational Performance Standards of the Radio Technical Commission for Aeronautics for Global Positioning System (GPS)/SBAS airborne equipment. In this study, the MIMO system was verified by comparing and analyzing the outputs of reference tools. Additionally, the definition and derivation method of accuracy, integrity, continuity, and availability subject to MIMO were examined. The internal and external interfaces and functions were then designed and implemented. The GPS data pre-processing was minimized during the implementation to evaluate the navigation performance experienced by general users. Subsequently, tests and verification methods were used to compare the obtained results based on reference tools. The test was performed using the KASS dataset, which included GPS and SBAS observations. The decoding performance of the developed MIMO was identical to that of the reference tools. Additionally, the navigation performance was verified by confirming the similarity in trends. As MIMO is a component of KASS used for real-time monitoring of the navigation performance of SBAS, the KASS operator can identify whether an abnormality exists in the navigation performance in real-time. Moreover, the preliminary identification of the abnormal point during the post-processing of data can improve operational efficiency.

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.

A Study on the GEO-Tracking Algorithm of EOTS for the Construction of HILS system (HILS 시스템 구축을 위한 EOTS의 좌표지향 알고리즘 실험에 대한 연구)

  • Gyu-Chan Lee;Jeong-Won Kim;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.663-668
    • /
    • 2023
  • Recently it is very important to collect information such as enemy positions and facilities. To this end, unmanned aerial vehicles such as multicopters have been actively developed, and various mission equipment mounted on unmanned aerial vehicles have also been developed. The coordinate-oriented algorithm refers to an algorithm that calculates a gaze angle so that the mission equipment can fix the gaze at a desired coordinate or position. Flight data and GPS data were collected and simulated using Matlab for coordinate-oriented algorithms. In the simulation using only the coordinate data, the average Pan axis angle was about 0.42°, the Tilt axis was 0.003°~0.43°, and the relatively wide error was about 0.15° on average. As a result of converting this into the distance in the NE direction, the error distance in the N direction was about 2.23m on average, and the error distance in the E direction was about -1.22m on average. The simulation applying the actual flight data showed a result of about 19m@CEP. Therefore, we conducted a study on the self-error of coordinate-oriented algorithms in monitoring and information collection, which is the main task of EOTS, and confirmed that the quantitative target of 500m is satisfied with 30m@CEP, and showed that the desired coordinates can be directed.

An Analysis on Situation and Causes of Strategic Alliance Major Container Liner Company in the World (세계 주요 컨테이너 해운기업의 전략적 제휴의 현황과 그 생성원인에 관한 연구)

  • Lee, Tae-Woo;Kim, Kwang-Hee;Lee, Kwang-Hee
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.3
    • /
    • pp.1-18
    • /
    • 1997
  • From the beginning of 1990s , also in the shipping industry, especially liner shipping industry competition has been more intensive and difference of the service quality among shipping companies has been learned . On the other hand, a shipping company has some limitations to do its international mission for itself just by broadening service area. For this reason, the necessity for the global strategi alliance among the shipping companies, which is orginally aimed at sharing of facilities and organixation, has been developed. Through strategic alliance, liner shipping companies do not need to input the additional capitals to increase the material assets such as vessel capacity and spread the risk by the enlargement of the market. Also, they can secure the competitive edge through efficient utilizaton of assets. The purpose of strategic alliance of Hanjin Shipping Ltd., can be summarized as follows ; broadening of service area, cost reduction through vessel sharing, realization of rationalized shipping service by terminal and equipment or facilities sharing. Liner strategic alliances are agreement among liner companies to pol their equipment , andterminals for joint operations and services in which each alliance partner continues to serve its market using jointly operated or used inland feeders,inland terminals, port terminals, and mainline fleets of ship as well as joint pools of containers and equipment. Strategic alliances are generally more formal agreements than consortia and impose longer term and far reaching obligation on their members. It also acts as one in developing and advancing the strategic aims of the alliance members. The most important objective for liner strategic alliances is cost reduction and improvement in capital asset utilization. Main aims of strategic alliance drawn in this paper, can be enumerated follows : 1. improvements in service frequency and quality : 2. improvements in vessel and equipment utilization and thereby reductions in fixed and variable cost ; 3. improvements in market shares and high value cargo booking ; 4. reductions in intermodal storage and port terminal throughput costs ; 5. improvements in negotiating powers with ports and feeder transport providers ; 6. reduction in financial and other fixed costs such as insurance; 7. coordination and integration of MIS and EDI systems and service for greater efficiency and market penetration ; and, 8. improvements in logistic chain management and economic of scale by equipment depot, terminal, and vessel sharing.

  • PDF

Attitudes Estimation for the Vision-based UAV using Optical Flow (광류를 이용한 영상기반 무인항공기의 자세 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.342-351
    • /
    • 2010
  • UAV (Unmanned Aerial Vehicle) have an INS(Inertial Navigation System) equipment and also have an electro-optical Equipment for mission. This paper proposes the vision based attitude estimation algorithm using Kalman Filter and Optical flow for UAV. Optical flow is acquired from the movie of camera which is equipped on UAV and UAV's attitude is measured from optical flow. In this paper, Kalman Filter has been used for the settlement of the low reliability and estimation of UAV's attitude. Algorithm verification was performed through experiments. The experiment has been used rate table and real flight video. Then, this paper shows the verification result of UAV's attitude estimation algorithm. When the rate table was tested, the error was in 2 degree and the tendency was similar with AHRS measurement states. However, on the experiment of real flight movie, maximum yaw error was 21 degree and Maximum pitch error was 7.8 degree.

Analysis on Causal Factors Affecting the Stress of Pilots by the Environmental Differences between Live-Virtual Simulation (Live-Virtual 시뮬레이션 환경차이에 따른 조종사 스트레스 유발요인 분석)

  • Kim, Jinju;Kim, Sungho;Seol, Hyeonju;Jee, Cheolkyu;Hong, Youngseok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Recently, Live-Virtual-Constructive (L-V-C) integrate training system has proposed as a solution for the problems such as limitation of training areas, increase of mission complexity, rise in oil prices. In order to integrate each training system into the one effectively, we should solve the issue about stress of pilots by the environmental differences between Live and Virtual simulation which could be occurred when each system is connected together. Although it was already examined in previous study that the psychological effects on pilots was occurred by the environmental differences between actual and simulated flights, the study did not include what the causal factors affecting psychological effects are. The aim of this study is to examine which environmental factors that cause pilots' psychological effects. This study analyzed the biochemical stress hormone, cortisol to measure the pilots' psychological effects and cortisol was measured using Enzyme-linked immunoassay (EIA). A total of 40 pilots participated in the experiment to compare the differences in pilots' cortisol response among live simulation, virtual simulation, and the virtual simulation applying three environmental factors (gravity force, noise, and equipment) respectively. As a result, there were significant differences in cortisol level when applied the gravity force and equipment factors to the virtual simulation, while there was no significant difference in the case of the noise factor. The results from this study can be used as a basis for the future research on how to make L-V system by providing minimum linkage errors and design the virtual simulator that can reduce the differences in the pilots' psychological effects.

Plug-and-Play Framework for Connectivity Control and Self-Reconfiguration of Weapon System Components (무기체계 구성장치의 연결성 제어 및 자율 재구성을 위한 플러그앤플레이 프레임워크)

  • Chang, HyeMin;Kang, SukJong;Cho, YoungGeol;Yoon, JooHong;Yun, Jihyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.328-338
    • /
    • 2021
  • A study on common modular design based on open standards to reduce the life cycle cost of ground weapon system is underway. Since the ground weapon system includes major mission equipment such as fire control system, it is essential to apply the concept of fault tolerance through automatic reconfiguration and blocking unspecified equipment through connectivity control. However, it is difficult to generalize due to the difference in operating characteristics for each system. In this paper, we propose a plug-and-play framework, which includes plug-and-play architecture and mechanism. The proposed method can be used in common by the application of each component as it is divided into a common service layer. In addition, the proposed connectivity control and autonomous reconfiguration method facilitates reflection of operating characteristics for each system. We constructed a verification environment that can simulate ground weapon systems and components, and verified that the proposed framework works through scenario-based functional tests.