• Title/Summary/Keyword: Mission data

Search Result 912, Processing Time 0.024 seconds

Mission Effectiveness Model for Replenishment Ships (해상보급감정의 임무효과모형)

  • 신현주;하석태
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.1
    • /
    • pp.97-113
    • /
    • 1996
  • Mission effectiveness may be defined as a probability that a system can successfully meet an intended mission demand within a given time when operated under specified conditions. This study deals with the Mission effectiveness of a replenishment ships that is performing several types of missions. The essential attributes and their related factors affecting the replenishment missions are established, and then, a mathematical mission effectiveness model is constructed with a replenishment mission characteristics for a basis. Mission effectiveness for a mission is determined by finding the joint probability measure of the following three attributes : operational readiness of the replenishment ships at the start of a mission ; mission reliability of the replenishment ships ; capability of successfully accomplishing intended objectives given an environmental condition. The model is solved analytically. Operational readiness of the replenishment ships in found by the assumed data. Mission reliability and capability are calculated based on the assumed probability distributions. The model would be a useful tool to evaluate mission effectiveness as it is very a replenishment ships.

  • PDF

Implementation of Slaving Data Processing Function for Mission Control System in Space Center (우주센터 발사통제시스템의 추적연동정보 처리기능 구현)

  • Choi, Yong-Tae;Ra, Sung-Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.31-39
    • /
    • 2014
  • In KSLV-I launch mission, real-time data from the tracking stations are acquired, processed and distributed by the Mission Control System to the user group who needed to monitor processed data for safety and flight monitoring purposes. The processed trajectory data by the mission control system is sent to each tracking system for target designation in case of tracking failure. Also, the processed data are used for decision making for flight termination when anomalies occur during flight of the launch vehicle. In this paper, we propose the processing mechanism of slaving data which plays a key role of launch vehicle tracking mission. The best position data is selected by predefined logic and current status after every available position data are acquired and pre-processed. And, the slaving data is distributed to each tracking stations through time delay is compensated by extrapolation. For the accurate processing, operation timing of every procesing modules are triggered by time-tick signal(25ms period) which is driven from UTC(Universial Time Coordinates) time. To evaluate the proposed method, we compared slaving data to the position data which received by tracking radar. The experiments show the average difference value is below 0.01 degree.

Efficient Mission Data Transmission with Sampling-Based Optimization in MIL-STD-1553B (MIL-STD-1553B 통신에서 샘플링 기반 최적화 기법을 이용한 효율적 임무 자료 전송)

  • Lee, Heoncheol;Kim, Kipyo;Kwon, Yongsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.370-378
    • /
    • 2018
  • The mission data in missile systems should be quickly and reliably transmitted from a mission transmission device to a guidance control unit. The MIL-STD-1553B is one of the reliable communication standards, but its bit rate is generally limited to 1Mbps due to the intrinsic properties of its electrical design. Therefore, the bus controller needs to be optimized to efficiently transmit the mission data on the inevitably limited bit rate. This paper proposes an analytical approach based on sampling-based optimization methods to maximize the data throughput without data loss. The proposed approach was evaluated in the simulations with the data transmission model for the MIL-STD-1553B communication system. The results of the proposed methods were applied to a real-time system and showed that the proposed method was successfully performed.

A Study on the System Configuration and Communication Equipment Operation for Mission and Control of Small UAV (소형 무인항공기의 임무 및 제어를 위한 시스템 구성과 통신 장비 운용에 대한 연구)

  • Ha, Young-Seok
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.118-124
    • /
    • 2019
  • As Unmanned Aerial Vehicles technology has been widespread, various types of unmanned aircraft and mission equipment have been developed in line with mission diversification. Especially in Korea, small unmanned aerial vehicles have been actively developed. In addition, flight control system and mission equipment interface system for effective control of small unmanned aerial vehicles, efficient communication system configuration and operation for transmission to ground operated systems by processing data are required. This paper addresses efficient system structure and operation of communication equipment for missions and control of small unmanned aerial vehicles.

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

Mission Operations of the KOMPSAT-1 satellite

  • Kim, Hae-Dong;Kim, Eun-Kyou;Park, Hae-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.92.5-92
    • /
    • 2001
  • The KOMPSAT-1(Korea Multi-Purpose Satellite-1) is the first multi-purpose satellite funded by Korean government for the purpose of remote sensing and scientific data gathering in KOREA. It has successfully achieved its own mission since Dec. 21, 1999. This paper provides an overview of the KOMPSAT-1 missions and addresses the nominal mission planning and operation flow. This paper also describes the routine operational orbit determination and orbit prediction process using GPS navigation solution data. Meanwhile, some problems due to inexperience of the multiple mission operations during LEOP(Launch & Early Orbit Phase) and early normal mission were investigated. Then, resolutions that include the development of new mission planning tool are addressed. The KOMPSAT-1´s missions become more complicated rather than its Initially designed ones. In order to accomplish ...

  • PDF

Design on Flight-Critical Function of Mission Computer for KUH (한국형기동헬기 임무컴퓨터 비행필수기능 설계)

  • Yu, Yeon-Woon;Kim, Tae-Yeol;Jang, Won-Hong;Kim, Sung-Woo;Lim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • Avionics system tends to be designed to have the integrated architecture, and it is getting difficult and complex to verify the flight-critical function because of sophisticated structure. In Korean Utility Helicopter, mission computer acts as the MUX Bus Controller to handle the data from both communication, identification, mission/display and survivability equipment inside Mission Equipment Package and aircraft subsystems such as fuel system and electrical system while it is interfacing with Automatic Flight Control System and Full-Authority Digital Engine Control via ARINC-429 bus. The Flight Displays which is classified as flight-critical function in aircraft is implemented on Primary Flight Display after mission computer processes data from AFCS in order to generate graphics. This paper defines the flight-critical function implemented in mission computer for KUH, and presents the static and dynamic test procedures which is performed on System Integration Laboratory along with Playback Recorder prior to flight test.

PERFORMING OF SOC DATS INTERFACE TEST WITH MODEM/BB

  • Park, Durk-Jong;Hyun, Dae-Hwan;Koo, In-Hoi;Ahn, Sang-Il;Kim, Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.64-66
    • /
    • 2006
  • DATS will connect with IMPS and LHGS to perform the reception of sensor data and the transmission of user's meteorological data, LRIT and HRIT. MODEM/BB will perform the de-commutation of received sensor data as MI and GOCI raw data according to VCID before sending them to MI and GOCI IMPS, respectively. Especially, MODEM/BB in SOC needs to be connected to six clients that consist of the primary and backup IMPS of MSC, KOSC and SOC. On the other hand, LRIT and HRIT delivered from LHGS are encoded as VITERBI and modulated by MODEM/BB. Considering sensor data transmitted from COMS, the assumed format and size of CADU are described in this paper. Finally, results related to the status of received LRIT and HRIT by frame synchronizer in user station are also described.

  • PDF

Analysis of Dedicated Mission Software Architecture for Unmanned Vehicles for Public Mission (공공임무를 위한 무인이동체 탑재용 임무소프트웨어 구조 분석)

  • Park, Jong-Hong;Choi, Sungchan;Ahn, Il-Yeup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.435-440
    • /
    • 2020
  • The application of the unmanned vehicles in various fields has been attracting attention, and the development of a service utilizing unmanned vehicles has been proceeding. As the service market using the unmanned vehicles rapidly increases, the demand for the development of software for performing the mission with unmanned vehicles is increasing. In particular, as the demand for unmanned vehicle utilization services for public missions such as fire detection, mail delivery, and facility management increases, the importance of developing mission software for unmanned vehicle is increasing. To develop common mission software, architecture design should be made so that unmanned vehicle service provider can easily develop software using reusable libraries or functions through analysis commonly required by various public institutions. In this paper, we discuss the research trends of mission software for public mission unmanned vehicles. In addition, the architecture design of developing formal mission software is proposed. Finally, we propose a data transfer architecture between mission software and data platform.

MEASUREMENT OF IMPLEMENTATION LOSS FOR BRIT RECEIVER

  • Park Durk-Jong;Koo In-Hoi;Yang Hyung-Mo;Ahn Sang-Il;Kim Eun-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.561-563
    • /
    • 2005
  • From the IF (Intermediated Frequency) loop-back test, BER (Bit Error Rate) degradation of processed data, HRIT (High Rate Information Transmission), is estimated by proposed measurement configuration. The specific parameters, likely data rate, FEC (Forward Error Correction), and modulation method, are based on the outcomes of SRR (System Requirements Review) which was held on 13-14 June 2005, in Toulouse. The proposed measurement procedure is that combined 70MHz modulated signal and noise is connected to the spectrum analyzer and receiver. The former measures the C/No (Carrier to Noise density ratio) and the latter estimates BER of FEC decoded data. Implementation loss can be obtained by subtracting measured BER from calculated BER which is also subtracted data rate from measured C/No. This test procedure is very simple and can be applied to assess the implementation loss of dedicated receiver for HRIT in the future.

  • PDF