• Title/Summary/Keyword: Mission command

Search Result 110, Processing Time 0.037 seconds

Mission Management Technique for Multi-sensor-based AUV Docking

  • Kang, Hyungjoo;Cho, Gun Rae;Kim, Min-Gyu;Lee, Mun-Jik;Li, Ji-Hong;Kim, Ho Sung;Lee, Hansol;Lee, Gwonsoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.181-193
    • /
    • 2022
  • This study presents a mission management technique that is a key component of underwater docking system used to expand the operating range of autonomous underwater vehicle (AUV). We analyzed the docking scenario and AUV operating environment, defining the feasible initial area (FIA) level, event level, and global path (GP) command to improve the rate of docking success and AUV safety. Non-holonomic constraints, mounted sensor characteristic, AUV and mission state, and AUV behavior were considered. Using AUV and docking station, we conducted experiments on land and at sea. The first test was conducted on land to prevent loss and damage of the AUV and verify stability and interconnection with other algorithms; it performed well in normal and abnormal situations. Subsequently, we attempted to dock under the sea and verified its performance; it also worked well in a sea environment. In this study, we presented the mission management technique and showed its performance. We demonstrated AUV docking with this algorithm and verified that the rate of docking success was higher compared to those obtained in other studies.

Lessons Learned from Korea Pathfinder Lunar Orbiter Flight Dynamics Operations: NASA Deep Space Network Interfaces and Support Levels

  • Young-Joo Song;SeungBum Hong;Dong-Gyu Kim;Jun Bang;Jonghee Bae
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.79-88
    • /
    • 2023
  • On Aug. 4, 2022, at 23:08:48 (UTC), the Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was launched using a SpaceX Falcon 9 launch vehicle. Currently, KPLO is successfully conducting its science mission around the Moon. The National Aeronautics and Space Administration (NASA)'s Deep Space Network (DSN) was utilized for the successful flight operation of KPLO. A great deal of joint effort was made between the Korea Aerospace Research Institute (KARI) and NASA DSN team since the beginning of KPLO ground system design for the success of the mission. The efficient utilization and management of NASA DSN in deep space exploration are critical not only for the spacecraft's telemetry and command but also for tracking the flight dynamics (FD) operation. In this work, the top-level DSN interface architecture, detailed workflows, DSN support levels, and practical lessons learned from the joint team's efforts are presented for KPLO's successful FD operation. Due to the significant joint team's efforts, KPLO is currently performing its mission smoothly in the lunar mission orbit. Through KPLO cooperative operation experience with DSN, a more reliable and efficient partnership is expected not only for Korea's own deep space exploration mission but also for the KARI-NASA DSN joint support on other deep space missions in the future.

TT&C Antenna Design for LEO Satellite (저궤도 위성용 TT&C 안테나의 설계)

  • Lee, Kwang-Jae;Woo, Duk-Jae;Lee, Taek-Kyung;Lee, Jae-Wook;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.642-650
    • /
    • 2010
  • In this paper, we study a TT&C link to obtain a required specifications of TT&C(Telemetry Tracking and Command system) antenna for an LEO(Low Earth Orbit) satellite. The premised mission orbit is the sun-synchronized and circular orbit and it performs earth-space observations. We design minimum TT&C link-budget to obtain required antenna beamwidth and gain. The proposed turnstile antenna provides wide beamwidth and circular polarization. We suggested the attaching position that shows the most effective results by confirming the variation of antenna performance when the proposed antenna is adapted to satellite's various positions. Also we proved the proposed antenna's ability while it is performing the mission through the orbit simulation based on the electrical performance of the proposed turnstile antenna.

The Development of Artificial Intelligence-Enabled Combat Swarm Drones in the Future Intelligent Battlefield (지능화 전장에서 인공지능 기반 공격용 군집드론 운용 방안)

  • Hee Chae;Kyung Suk Lee;Jung-Ho Eom
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.65-71
    • /
    • 2023
  • The importance of combat drones has been highlighted through the recent outbreak of the Russia-Ukraine war. The combat drones play a significant role as a a game changer that alters the conventional wisdom of traditional warfare. Many pundits expect the role of combat swarm drones would be more crucial in the future warfare. In this regard, this paper aims to analyze the development of artificial intelligence-enabled combat swarm drones. To transform the human-operated swarm drones into fully autonomous weaponry system our suggestions are as follows. Developments of (1) AI algorithms for optimized swarm drone operations, (2) decentralized command and control system, (3) inter-drones' mission analysis and allocation technology, (4) enhanced drone communication security and (5) set up of ethical guideline for the autonomous system. Specifically, we suggest the development of AI algorithms for drone collision avoidance and moving target attacks. Also, in order to adjust rapidly changing military environment, decentralized command and control system and mission analysis allocation technology are necessary. Lastly, cutting-edging secure communication technology and concrete ethical guidelines are essential for future AI-enabled combat swarm drones.

Delay Tolerant Packet Forwarding Algorithm Based on Location Estimation for Micro Aerial Vehicle Networks

  • Li, Shiji;Hu, Guyu;Ding, Youwei;Zhou, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1377-1399
    • /
    • 2020
  • In search and rescue mission, micro aerial vehicles (MAVs) are typically used to capture image and video from an aerial perspective and transfer the data to the ground station. Because of the power limitation, a cluster of MAVs are required for a large search area, hence an ad-hoc wireless network must be maintained to transfer data more conveniently and fast. However, the unstable link and the intermittent connectivity between the MAVs caused by MAVs' movement may challenge the packet forwarding. This paper proposes a delay tolerant packet forwarding algorithm based on location estimation for MAV networks, called DTNest algorithm. In the algorithm, ferrying MAVs are used to transmit data between MAVs and the ground station, and the locations of both searching MAVs and ferrying MAVs are estimated to compute the distances between the MAVs and destination. The MAV that is closest to the destination is selected greedy to forward packet. If a MAV cannot find the next hop MAV using the greedy strategy, the packets will be stored and re-forwarded once again in the next time slot. The experiment results show that the proposed DTNest algorithm outperforms the typical DTNgeo algorithm in terms of packet delivery ratio and average routing hops.

Laboratory Test Method for the Forward Motion Compensation of Airborne Camera (항공용 카메라 전방운동 보상기능의 실험실 입증방안)

  • Song, Dae-Buem;Yoon, Yong-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.507-512
    • /
    • 2012
  • Image blurring in airborne camera can be prevented through timely actuation of LOS(Line of Sight) into the opposite direction to the aircraft advancement, i.e. FMC(Forward motion compensation). Performance verification of FMC requires installation of camera to the aircraft. However, in many ways the verification process has little choice but to be implemented in the laboratory. In this paper verification method of FMC performance in the laboratory is introduced. With collimator target installed in the known reference position image obtained by actual mission plan naturally displays image blurring as well as LOS displacement by FMC effect. Through comparison of the amount of those image blurring and LOS displacement to the equivalent image distortion expected by the application of the FMC reference command can the performance be verified. In this paper we propose a new verification method of FMC performance in laboratory along with generalized solution of FMC reference command, and assess the validity of our proposition.

Study of Speech Recognition System Operation for Voice-driven UAV Control (음성 기반 무인 항공기 제어를 위한 음성인식 시스템 운용 체계 연구)

  • Park, Jeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.212-219
    • /
    • 2019
  • As unmanned aerial vehicle (UAV) has been utilized for military operation, efficient ways for controlling UAV has been necessary. In particular, instead of conventional approach using console control, speech recognition based UAV control is essential for military environments in which rapid command operation is required. But research on this novel approach is not actively studied yet. In this study, we introduce efficient ways of speech recognition system operation for voice-driven UAV control, focusing on mission command control from manned aircraft rather than ground control center. We propose an efficient way of system operation for UAV control in cooperation of aircraft and UAV, and verify its efficiency via speech recognition experiment.

Tele-Manipulation of ROBHAZ-DT2 for Hazard Environment Applications

  • Ryu, Dong-Seok;Lee, Jong-Wha;Yoon, Seong-Sik;Kang, Sung-Chul;Song, Jae-Bok;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2051-2056
    • /
    • 2003
  • In this paper, a tele-manipulation in explosive ordnance disposal(EOD) applications is discussed. The ROBHAZ-DT2 is developed as a teleoperated mobile manipulator for EOD. In general, it has been thought that the robot must have appropriate functions and accuracy enough to handle the complicated and dangerous mission. However, the research on the ROBHAZ-DT2 revealed that the teleoperation causes more restrictions and difficulties in EOD mission. Thus to solve the problem, a novel user interface for the ROBHAZ-DT2 is developed, in which the operator can interact with various human senses (i.e. visual, auditory and haptic sense). It enables an operator to control the ROBHAZ-DT2 simply and intuitively. A tele-manipulation control scheme for the ROBHAZ-DT2 is also proposed including compliance control via force feedback. It makes the robot adapt itself to circumstances, while the robot faithfully follows a command of the operator. This paper deals with a detailed description on the user interface and the tele-manipulation control for the ROBHAZ-DT2. An EOD demonstration is conducted to verify the validity of the proposed interface and the control scheme.

  • PDF

The Analysis of the U.S. Navy Surface Forces Strategy and the implications to Republic of Korea Navy (미(美) 해군 수상함부대 전략 평가 및 한국 해군에게 주는 시사점)

  • Kim, Hyun-Seung
    • Strategy21
    • /
    • s.41
    • /
    • pp.52-84
    • /
    • 2017
  • After finishing Cold War, the U.S. Navy's ability to Sea control has been gradually eroded last 15-20 years. The global security environment demands that the surface Navy rededicate itself to sea control, as a new group of potential adversaries is working to deny U.S. navy command of the sea. China has been increasing their sea denial capability, such as extended anti-surface cruise missile and anti-surface ballistic missile. To cope with this situation, the U.S. Naval Surface Forces Command has announced Surface Forces Strategy: Return to Sea Control. It is a new operating and organizing concept for the U.S. surface fleet called 'distributed lethality'. Under distributed lethality, offensive weapons such as new ASCMs are to be distributed more widely across all types of Navy surface ships, and new operational concept for Navy surface fleet's capability for attacking enemy ships and make it less possible for an enemy to cripple the U.S. fleet by concentrating its attack on a few very high-value Navy surface ships. By increasing the lethality of the surface ships and distributing them across wide areas, the Navy forces potential adversaries to not only consider the threat from our carrier-based aircraft and submarines, but they now consider the threat form all of those surface ships. This idea of using the distributed lethality template to generate surface action groups and adaptive force package and to start thinking about to increase the lethal efficacy of these ships. The U.S. Navy believes distributed lethality increases the Navy's sea control capability and expands U.S. conventional deterrence. Funding new weapons and renovated operating concept to field a more lethal and distributed force will enable us to establish sea control, even in contested area. The U.S. Navy's Surface Forces Strategy provides some useful implications for The ROK Navy. First the ROK Navy need to reconsider sea control mission. securing sea control and exploiting sea control are in a close connection. However, recently the ROK Navy only focuses on exploiting sea control, for instance land attack mission. the ROK Navy is required to reinvigorate sea control mission, such as anti-surface warfare and anti-air warfare. Second, the ROK Navy must seek the way to improve its warfighting capability. It can be achieved by developing high-edge weapons and designing renewed operating concept and embraced new weapon's extended capabilities.

A Study on Cockpit Voice Command System for Fighter Aircraft (전투기용 음성명령 시스템에 대한 연구)

  • Kim, Seongwoo;Seo, Mingi;Oh, Yunghwan;Kim, Bonggyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.1011-1017
    • /
    • 2013
  • The human voice is the most natural means of communication. The need for speech recognition technology is increasing gradually to increase the ease of human and machine interface. The function of the avionics equipment is getting various and complicated in consequence of the growth of digital technology development, so that the load of pilots in the fighter aircraft must become increased since they don't concentrate only the attack function, but also operate the complicated avionics equipments. Accordingly, if speech recognition technology is applied to the aircraft cockpit as regards the operating the avionics equipments, pilots can spend their time and effort on the mission of fighter aircraft. In this paper, the cockpit voice command system applicable to the fighter aircraft has been developed and the function and the performance of the system verified.