• Title/Summary/Keyword: Mission Analysis

Search Result 984, Processing Time 0.027 seconds

Markov Chain Model-Based Trainee Behavior Pattern Analysis for Assessment of Information Security Exercise Courses (정보보안 훈련 시스템의 성취도 평가를 위한 마코브 체인 모델 기반의 학습자 행위 패턴 분석)

  • Lee, Taek;Kim, Do-Hoon;Lee, Myong-Rak;In, Hoh Peter
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1264-1268
    • /
    • 2010
  • In this paper, we propose a behavior pattern analysis method for users tasking on hands-on security exercise missions. By analysing and evaluating the observed user behavior data, the proposed method discovers some significant patterns able to contribute mission successes or fails. A Markov chain modeling approach and algorithm is used to automate the whole analysis process. How to apply and understand our proposed method is briefly shown through a case study, "network service configurations for secure web service operation".

Comparative Analysis of Digital Elevation Models between AW3D30, SRTM30 and Airborne LiDAR: A Case of Chuncheon, South Korea

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • DEM (Digital Elevation Model) is a useful dataset which represents the earth surface. Beside many applications, production and frequent update of DEM is a costly task. Recently global satellite based DEMs are available which has huge potential for application. To check the accuracy, this study compares two global DEMs: AW3D30 (Advanced Land Observing Satellite World 3D 30m) and SRTM30 (Shuttle Radar Topography Mission Global 30m) with reference resampled LiDAR DEM 30m in a test area around Chuncheon, Korea. The comparison analysis was based on statistics of each DEM, their difference, profiles, slope, basin and stream orders. As a result, it is found that SRTM30 and AW3D30 were much similar but inconsistent in the test area compared to the LiDAR30 DEM. In addition, SRTM30 shows less difference with LiDAR30 compared to the AW3D30 DEM. But, DEMs should be very carefully examined for area which has temporal or season changes. For basin and stream analysis, global DEMs can be used only for regional scale analysis not local large scales.

Full-Frequency Band Acoustic Analysis of Sandwich Composite Structure Using FE-BEM and SEA Method (FE-BEM 및 SEA 해석 기법을 활용한 샌드위치 복합재 구조물의 전 주파수 대역 음향 해석)

  • Lee, Dae-Oen;Lee, Yoon-Kyu;Kim, Hong-Il;Kim, Jae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.422-428
    • /
    • 2018
  • Increase in use of lightweight structures, coupled with the increased acoustic loads resulting from larger and longer range guided missiles, has made missile more susceptible to failures caused by acoustic loads. Thus, accurate prediction of acoustic environment and the response is becoming ever more important for mission success. In this paper, the acoustic response of a sandwich composite skin structure to diffuse acoustic excitation is predicted over a broad frequency range. For the low frequency acoustic analysis, coupled FE-BEM method is used where the structure is modeled using FEM and the interior and exterior fluid is modeled using BEM. For the high frequency region, statistical energy analysis is applied. The predicted acoustic level inside the structure is compared with the result from acoustic test conducted in reverberation chamber, which shows very good agreement.

LOSSY JPEG CHARACTERISTIC ANALYSIS OF METEOROLOGICAL SATELLITE IMAGE

  • Kim, Tae-Hoon;Jeon, Bong-Ki;Ahn, Sang-Il;Kim, Tae-Young
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.282-285
    • /
    • 2006
  • This paper analyzed the characteristics of the Lossy JPEG of the meteorological satellite image, and analyzed the quality of the Lossy JPEG compression, which is proper for the LRIT(Low Rate Information Transmission) to be serviced to the SDUS(Small-scale Data Utilization Station) system of the COMS(Communication, Oceans, Meteorological Satellite). Since COMS is to start running after 2008, we collected the data of the MTSAT-1R(Multi-functional Transport Satellite -1R) for analysis, and after forming the original image to be used to LRIT by each channel and time zone of the satellite image data, we set the different quality with the Lossy JPEG compression, and compressed the original data. For the characteristic analysis of the Lossy JPEG, we measured PSNR(Peak Signal to Noise Rate), compression rate and the time spent in compression following each quality of Lossy JPEG compression. As a result of the analysis of the satellite image data of the MTSAT-1R, the ideal quality of the Lossy JPEG compression was found to be 90% in the VIS Channel, 85% in the IR1 Channel, 80% in the IR2 Channel, 90% in the IR3 Channel and 90% in the IR4 Channel.

  • PDF

Preliminary Thermal Analysis for LEO Satellite Optical Payload's Thermal Vacuum Test (저궤도위성 광학탑재체의 지상 열진공 시험을 위한 예비 열해석)

  • Lee, Jongl-Yul;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.466-473
    • /
    • 2011
  • The purpose of satellite thermal control design is to maintain all the elements of a spacecraft system within their temperature limits for all mission phases. The thermal analysis model for Low Earth Orbit satellite payload level simulation is established by considering thermal vacuum test environment condition, thermal vacuum chamber configuration, and satellite's payload inner thermal environment. The established thermal analysis model is used to determine thermal vacuum test conditions and test case requirements.

Analysis and Design of Dron System for Smart Safety-City Platform Construction (스마트 안전도시 플랫폼 구축을 위한 드론 시스템의 분석 및 설계)

  • Cho, Byung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.93-99
    • /
    • 2020
  • It seems to be increased rapidly that practical uses of intelligent Dron for public mission performance such as surveillance, prevention of disaster accident, relief etc with Dron technology development. Dron is needed for major technology realization of detection and trace technology of target, flight control and obstacle avoidance during flighting, detection and control of landing point functions to use smart safety-city platform construction. This dron system cause a great ripple effect technically and promote industrialization in the field of new technology. In this paper, an effective analysis and design method of dron system software will be presented by showing user requirement analysis using object-oriented method, flowchart and screen design.

Sensitivity Analysis for Reliability Prediction Standard: Focusing on MIL-HDBK-217F, RiAC-HDBK-217Plus, FIDES (신뢰도 예측 규격의 민감도 분석: MIL-HDBK-217F, RiAC-HDBK-217Plus, FIDES를 중심으로)

  • Oh, JaeYun;Park, SangChul;Jang, JoongSoon
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.92-102
    • /
    • 2017
  • Purpose: Reliability prediction standards consider environmental conditions, such as temperature, humidity and vibration in order to predict the reliability of the electronics components. There are many types of standards, and each standard has a different failure rate prediction model, and requires different environmental conditions. The purpose of this study is to make a sensitivity analysis by changing the temperature which is one of the environmental conditions. By observing the relation between the temperature and the failure rate, we perform the sensitivity analysis for standards including MIL-HDBK-217F, RiAC-HDBK-217Plus and FIDES. Methods: we establish environmental conditions in accordance with maneuver weapon systems's OMS/MP and mission scenarios then predict the reliability using MIL-HDBK-217F, RiAC-HDBK-217Plus and FIDES through the case of DC-DC Converter. Conclusion: Reliability prediction standards show different sensitivities of their failure rates with respect to the changing temperatures.

L.E.O. Satellite Power Subsystem Reliability Analysis

  • Zahran M.;Tawfik S.;Dyakov Gennady
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.104-113
    • /
    • 2006
  • Satellites have provided the impetus for the orderly development of reliability engineering research and analysis because they tend to have complex systems and hence acute problems. They were instrumental in developing mathematical models for reliability, as well as design techniques to permit quantitative specification, prediction and measurement of reliability. Reliability engineering is based on implementing measures which insure an item will perform its mission successfully. The discipline of reliability engineering consists of two fundamental aspects; $(1^{st})$ paying attention to details, and $(2^{nd})$ handling uncertainties. This paper uses some of the basic concepts, formulas and examples of reliability theory in application. This paper emphasizes the practical reliability analysis of a Low Earth Orbit (LEO) Micro-satellite power subsystem. Approaches for specifying and allocating the reliability of each element of the power system so as to meet the overall power system reliability requirements, as well as to give detailed modeling and predicting of equipment/system reliability are introduced. The results are handled and analyzed to form the final reliability results for the satellite power system. The results show that the Electric Power Subsystem (EPS) reliability meets the requirements with quad microcontrollers (MC), two boards working as main and cold redundant while each board contains two MCs in a hot redundant.

Modeling and Bifurcation Analysis of the 2D Airfoil with Torsional Nonlinearity (비틀림 비선형성을 갖는 2차원 익형의 모델링 및 Bifurcation 해석)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Sung-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • Recent developments for high altitude, long endurance conventional UAVs(HALE UAVs) have revealed new issues regarding aircraft structure design and analysis. First of all, due to intensive mission requirements, the structures of HALE UAVs have lightweight and very flexible main wing with high aspect ratio, and slender fuselage. For this kind of structures, aeroelastic characteristics are different from conventional aircrafts. Hence, currently developed analysis methods are not suitable to fully understand strucutral dynamics of the very flexible aircraft, and to guarantee structural reliability. Therefore, various structural studies considering nonlinear behaviors which are generally ignored for the conventional aircraft strucutral analyis have been attracting researchers interests. Nonlinear flutter of the very flexible wing is one of the subject to be studied in combination with strong coupling between aeroelastic characteristics and flight dynamics. Herein, as preliminary study, modeling and nonlinear system analysis of the 2D airfoild with torsional nonlinearity have been discussed.

Modeling and Bifurcation Analysis of the 2D Airfoil with Torsional Nonlinearity (비틀림 비선형성을 갖는 2차원 익형의 모델링 및 Bifurcation 해석)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Sung-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.226-231
    • /
    • 2013
  • Recent developments for high altitude, long endurance conventional UAVs (HALE UAVs) have revealed new issues regarding aircraft structure design and analysis. First of all, due to intensive mission requirements, the structures of HALE UAVs have lightweight and very flexible main wing with high aspect ratio, and slender fuselage. For this kind of structures, aeroelastic characteristics are different from conventional aircrafts. Hence, currently developed analysis methods are not suitable to fully understand strucutral dynamics of the very flexible aircraft, and to guarantee structural reliability. Therefore, various structural studies considering nonlinear behaviors which are generally ignored for the conventional aircraft strucutral analyis have been attracting researchers interests. Nonlinear flutter of the very flexible wing is one of the subject to be studied in combination with strong coupling between aeroelastic characteristics and flight dynamics. Herein, as preliminary study, modeling and nonlinear system analysis of the 2D airfoild with torsional nonlinearity have been discussed.

  • PDF