대중교통 교통카드 도입 이후, 점차 이용율이 증가되고 있다. 카드 데이터를 통해 얻을 수 있는 자료를 고려할 때 대중교통 카드 이용의 증가는 통행패턴 분석 및 정책적 측면에서 중요한 의미를 가지고 있다. 그 중에서 특히 죤별 대중교통 통행수요(O/D)를 손쉽게 파악할 수 있다는 점에서 높은 중요성을 가진다. 카드데이터를 통해 대중교통 죤별 통행수요(O/D)를 파악함에 있어서 데이터 자체의 오류에 대한 분석이나 결측에 대한 보완 과정이 반드시 필요하다. 본 연구에서는 반드시 선행되어야 할 과제이지만 아직 연구사례가 없었던 카드데이터의 오류와 결측에 관해 살펴보았다. 그 결과, 통행수요(O/D)분석과 관련한 오류나 결측에 대한 특성을 제시하였고, 결측에 대한 보정방안을 제안하였다. 그리고 제시된 결측방안들에 대한 적용 및 평가와 함께 활용방안을 제시하여, 향후 보다 신뢰성있는 대중교통 OD구축을 위한 기반을 마련하였다.
조사를 통하여 수집된 자료에 기반하여 분석을 수행하는데 있어서 결측값에 대한 적절한 대체 방법은 보다 정확한 결과를 얻기 위한 매우 중요한 절차이다. 본 연구에서는 모형에 기반하여 결측자료에 대한 대체방법과 모형 추정방법을 다루었다. 특히 최대우도추정 방법의 적용에서 발생할 수 있는 변방값 문제(bounday soluntion problem)를 해결하기 위하여 베이지안 방법을 적용하였다. 분석된 결과를 바탕으로 하여 예측을 수행한 후 결측체계에 따른 정확성 비교를 수행하여 결측체계에 따른 결측모형의 선택 문제를 다루었다. 예측의 정확도를 측정하기 위하여 Bautista 등 (2007)이 제안한 MWPE(modified within precinct error) 이용하여 비교를 수행 하였다. 본 연구에서 제시된 방법들은 2012년에 시행된 제 18대 대통령 선거 당일 시행된 출구조사의 자료를 적용하여 분석을 수행하였다. 분석 결과 임의결측체계의 가정에 따른 결과가 비임의체계 가정에 따른 결과보다 예측의 정확도가 더 높았다.
본 논문은 손실값을 포함하는 불완전한 데이터를 처리하는 방법에 대해 논한다. 손실값을 최적으로 처리한다는 것은 학습 데이터가 가지고 있는 정보들에서 본래값과 가장 근사한 추정치를 구하고, 이 값으로 손실값을 대치하는 것이다. 이것을 실현하기 위한 방안으로 분류기가 정보를 분류하는 과정에서 완성되어가는 결정트리를 이용한다. 다시말해 이 결정트리는 전체 학습 데이터 중에서 손실값을 포함하지 않는 완전한 정보만을 C4.5 분류기에 입력하여 학습하는 과정에서 얻어진다. 이 결정트리의 노드들은 분류 변수의 정보를 가지는데, 루트에 가까운 상위 노드일수록 많은 정보를 포함하게 되고 말단 노드에서는 루트로부터의 경로를 통해 분류 영역을 형성하게 된다. 또한 각 영역에는 분류된 데이터 사건들의 평균이 기록된다. 손실값을 포함하는 사건들은 이러한 결정트리에 입력되어 각 노드의 정보에 따라 순회과정을 통해 사건과 가장 근접한 영역을 찾아가게 된다. 이 영역에 기록된 평균값을 손실값의 추정치로 간주하고, 보상 과정은 완성된다.
본 연구는 결측치 비율이 높은 시계열 데이터를 효과적으로 분석하고 예측할 수 있는 머신러닝 모델을 구축하기 위해 다양한 결측치 처리 방법을 비교 분석하였다. 이를 위해 PSMF(Predictive State Model Filtering), MissForest, IBFI(Imputation By Feature Importance) 방법을 적용하였으며, 이후 LightGBM, XGBoost, EBM(Explainable Boosting Machines) 머신러닝 모델을 사용하여 예측 성능을 평가하였다. 연구 결과, 결측치 처리 방법 중에서는 MissForest와 IBFI가 비선형적 데이터 패턴을 잘 반영하여 가장 높은 성능을 나타냈으며, 머신러닝 모델 중에서는 XGBoost와 EBM 모델이 LightGBM 모델보다 더 높은 성능을 보였다. 본 연구는 결측치 비율이 높은 시계열 데이터의 분석 및 예측에 있어 비선형적 결측치 처리 방법과 머신러닝 모델의 조합이 중요함을 강조하며, 실무적으로 유용한 방법론을 제시하였다.
일반국도의 상시조사 자료는 교통량 조사 장비를 통해 수집되며, 수집된 자료가 누락되거나 불량일 경우 통계자료의 객관성을 유지하기 위해서 보정을 해야 한다. 교통량 결측 자료의 보정을 통계적인 방법으로 접근하여 신뢰성을 높이고자 본 연구에서는 보정 대상 시간과 동일시간의 자료를 적용할 수 있는 자기회귀분석과 보정 대상 지점과 동일 지점의 자료를 적용할 수 있는 계절 시계열 분석을 이용하여 보정하는 방안을 제시하였다. 계절 시계열 분석을 적용하여 결측 자료를 보정한 결과, 결측 기간이 길어질수록 오차가 커지는 것으로 분석되었다. 이것은 단기예측의 경우 실제자료를 이용하여 예측 값을 제시하지만, 장기예측의 경우 예측된 자료를 이용하여 예측값을 제시하기 때문에 신뢰성이 떨어지기 때문이라 판단된다. 자기회귀분석을 적용하여 결측 자료를 보정한 결과, 시계열분석에 비해서 오차가 적은 것으로 분석되었다. 이것은 교통량자료는 과거 패턴보다 현재 시점의 영향을 더 많이 받는 것이기 때문이라 판단된다 하지만 자기회귀분석은 인근에 패턴이 유사한 지점이 있어야 가능하며, 인근에 유사한 지점이 있더라도 그 지점의 자료가 불량일 경우 보정이 불가능하다는 단점이 있다. 이러한 경우에는 과거자료를 이용해서 보정할 수밖에 없으며, 단기 결측의 경우에는 시계열분석을 이용할 수 있다.
In this study a method for filling in missing data of river water temperature using a pre-constructed mathematical relationship between air and water temperatures is presented. A regression between water temperatures at individual stations and ambient air temperatures at nearby weather stations can provide a practical method for representing missing water temperature data for an entire region. Air and water temperature data that were collected from two test sites (one coastal and, one inland) were individually fitted to a nonlinear regression model. To consider seasonal hysteresis effects, separate functions were fitted to the data in the rising and falling limbs. A single-criterion, multi-parameter optimization technique was used to determine the optimal parameter sets. This method minimizes the differences between the time series of the measured and estimated data. The constructed air-water temperature relationship was subsequently applied to represent missing water temperature data. It was found that the RMSEs(MBEs) were in the range of $1.843-1.976^{\circ}C(-0.329-0.201^{\circ}C)$ and the coefficient of determination were in the range of 0.92-0.96. The results demonstrate that the predicted water temperatures using the regression equations were reasonably accurate.
This paper discusses missing data processing using simple moving average (SMA) and kalman filter. Also SMA and kalman predictive value are made a comparative study. Time series analysis is a generally method to deals with time series data in photovoltaic field. Photovoltaic system records data irregularly whenever the power value changes. Irregularly recorded data must be transferred into a consistent format to get accurate results. Missing data results from the process having same intervals. For the reason, it was imputed using SMA and kalman filter. The kalman filter has better performance to observed data than SMA. SMA graph is stepped line graph and kalman filter graph is a smoothing line graph. MAPE of SMA prediction is 0.00737%, MAPE of kalman prediction is 0.00078%. But time complexity of SMA is O(N) and time complexity of kalman filter is O(D2) about D-dimensional object. Accordingly we suggest that you pick the best way considering computational power.
Kim, Yuhee;Kim, Hyunsoo;Shin, Soobong;Park, Jong-Chil
비파괴검사학회지
/
제32권6호
/
pp.648-660
/
2012
Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposes a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable-stayed bridge.
In mountain accident events, it is important for the search team commander to determine the search area in order to secure the Golden Time. Within this period, assistance and treatment to the concerned individual will most likely prevent further injuries and harm. This paper proposes a method to determine the search priority area based on missing persons behavior and missing persons incidents statistics. GIS (Geographic Information System) and MCDM (Multi Criteria Decision Making) are integrated by applying WLC (Weighted Linear Combination) techniques. Missing persons were classified into five types, and their behavioral characteristics were analyzed to extract seven geographic analysis factors. Next, index values were set up for each missing person and element according to the behavioral characteristics, and the raster data generated by multiplying the weight of each element are superimposed to define models to select search priority areas, where each weight is calculated from the AHP (Analytical Hierarchy Process) through a pairwise comparison method obtained from search operation experts. Finally, the model generated in this study was applied to a missing person case through a virtual missing scenario, the priority area was selected, and the behavioral characteristics and topographical characteristics of the missing persons were compared with the selected area. The resulting analysis results were verified by mountain rescue experts as 'appropriate' in terms of the behavior analysis, analysis factor extraction, experimental process, and results for the missing persons.
원격 관측 자료인 위성 자료는 한계점이 있으며, 특히 광학 관측기를 활용하면 구름이나 기타 요인에 의해 손실 자료가 발생한다. 본 연구에서는 MODerate resolution Imaging Spectrometer(MODIS)의 관측 자료 중, 지표면 온도 자료를 대상으로 손실 자료를 복원하기 위한 방법인 평균 편차 방법, 회귀 분석 방법, 지역 변동 방법의 세 가지 복원 방법을 개발하였다. 검증을 위해 2014년과 2015년의 위성 자료에서 관측 비율을 근거로 사례를 선택하였다. 검증 자료에서 확인된 지역 변동 방법의 평균 제곱근 편차(RMSE)는 일부 사례에서 약 2 K 이상으로 다른 복원 방법에 비해 낮은 정확도를 보였으며, 회귀 분석 방법의 RMSE는 평균 약 1.13 K으로 대부분의 사례에서 가장 좋은 결과를 보였다. 평균 편차 방법 사용 시, RMSE는 회귀 분석 방법 시와 유사하게 약 1.32 K으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.