Macroecologists and biogeographers continue to predict the distribution of species across space based on the relationship between biotic processes and environmental variables. This approach uses data related to, for example, species abundance or presence/absence, climate, geomorphology, and soils. Researchers have acknowledged in their statistical analyses the importance of accounting for the effects of spatial autocorrelation (SAC), which indicates a degree of dependence between pairs of nearby observations. It has been agreed that residual spatial autocorrelation (rSAC) can have a substantial impact on modeling processes and inferences. However, more attention should be paid to the sources of rSAC and the degree to which rSAC becomes problematic. Here, we review previous studies to identify diverse factors that potentially induce the presence of rSAC in macroecological and biogeographical models. Furthermore, an emphasis is put on the quantification of rSAC by seeking to unveil the magnitude to which the presence of SAC in model residuals becomes detrimental to the modeling process. It turned out that five categories of factors can drive the presence of SAC in model residuals: ecological data and processes, scale and distance, missing variables, sampling design, and assumptions and methodological approaches. Additionally, we noted that more explicit and elaborated discussion of rSAC should be presented in species distribution modeling. Future investigations involving the quantification of rSAC are recommended in order to understand when rSAC can have an adverse effect on the modeling process.
Problems of incomplete data are pervasive in statistical analysis. In particular, incomplete data have been an important challenge in repeated measures studies. The objective of this study is to give a brief introduction to missing data mechanisms and conventional/recent missing data methods and to assess the performance of various missing data methods under ignorable and non-ignorable missingness mechanisms. Given the inadequate attention to longitudinal studies with missing data, this study applied recent advances in missing data methods to repeated measures models and investigated the performance of various missing data methods, such as FIML (Full Information Maximum Likelihood Estimation) and MICE(Multivariate Imputation by Chained Equations), under MCAR, MAR, and MNAR mechanisms. Overall, the results showed that listwise deletion and mean imputation performed poorly compared to other recommended missing data procedures. The better performance of EM, FIML, and MICE was more noticeable under MAR compared to MCAR. With the non-ignorable missing data, this study showed that missing data methods did not perform well. In particular, this problem was noticeable in slope-related estimates. Therefore, this study suggests that if missing data are suspected to be non-ignorable, developmental research may underestimate true rates of change over the life course. This study also suggests that bias from non-ignorable missing data can be substantially reduced by considering rich information from variables related to missingness.
Communications for Statistical Applications and Methods
/
v.17
no.2
/
pp.263-273
/
2010
Missing values in time series can be treated as unknown parameters and estimated by maximum likelihood or as random variables and predicted by the conditional expectation of the unknown values given the data. The purpose of this study is to impute missing values which are regarded as the maximum likelihood estimator and random variable in incomplete data and to compare with two methods using ARMA and STAR model. For illustration, the Mumps data reported from the national capital region monthly over the years 2001~2009 are used, and estimate precision of missing values and forecast precision of future data are compared with two methods.
In sampling survey, nonresponse tend to occur inevitably. If we use information from respondents only, the estimates will be baised. To overcome this, various non-response imputation methods have been studied. If there are few auxiliary variables for replacing missing imputation or spatial autocorrelation exists between respondents and nonrespondents, spatial autocorrelation can be used for missing imputation. In this paper, we apply several nonresponse imputation methods including spatial imputation for the analysis of farm household economy data of the Gangwon-Do in 2002 as an example. We show that spatial imputation is more efficient than other methods through the numerical simulations.
KIPS Transactions on Software and Data Engineering
/
v.8
no.2
/
pp.67-78
/
2019
Accurate electric load forecasting is very important in the efficient operation of the smart grid. Recently, due to the development of IT technology, many works for constructing accurate forecasting models have been developed based on big data processing using artificial intelligence techniques. These forecasting models usually utilize external factors such as temperature, humidity and historical electric load as independent variables. However, due to diverse internal and external factors, historical electrical load contains many missing data, which makes it very difficult to construct an accurate forecasting model. To solve this problem, in this paper, we propose a random forest-based missing data recovery scheme and construct an electric load forecasting model based on multilayer perceptron using the estimated values of missing data and external factors. We demonstrate the performance of our proposed scheme via various experiments.
Objectives: The purpose of the study was to identify the relationship between metabolic syndrome and oral diseases in the middle aged and elderly in Korea. Methods: The study subjects were 6,390 people over 40 years old from 2010 and 2012 Korea National Health and Nutrition Examination Survey. The survey questionnaire consisted of health, nutrition, and oral examination surveys. The independent variables included general characteristics, health behavior, oral health behavior, and metabolic syndrome. The dependent variables included dental caries experience and periodontal disease. The oral examination was carried out by the dentist based on World Health Organization standard. Results: The average prevalence rate of metabolic syndrome MS was 23.79%, including 54.84% of risk group and 21.37% of normal group. The missing teeth rate was 82.38%, DMFT rate was 90.28% and the periodontal disease rate was 33.15%. Those having abnormal fasting blood glucose had 1.17 fold(95% CI: 1.00~1.37) higher periodontal disease than the normal group. The abnormal HDL cholesterol group had 1.25 times higher odds ratio(95% CI: 1.07~1.46) and the obese group had 1.27 times higher odds ratio(95% CI: 1.07~1.51). The risk group had 1.20 times higher odds ration(95% CI: 1.00~1.44) and that of the metabolic syndrome group was 1.60 times higher(95% CI: 1.29~1.97) in periodontal disease. The high blood pressure group had 1.25 times of missing teeth prevalence rate(95% CI: 1.00~1.37). The metabolic syndrome group had 1.47 times of missing teeth prevalence rate(95% CI: 1.11~1.94). Conclusions: The middle aged and elderly people in Korea had higher rate of metabolic syndrome and oral disease. It is necessary to implement the preventive oral health examination for the control of metabolic syndrome and oral diseases prevalence.
Journal of the korean academy of Pediatric Dentistry
/
v.21
no.2
/
pp.611-616
/
1994
A major cause of missing permanent incisors is congenital abscence and extraction because of trauma and pathologic condition. The request for restoration of missing or spaced anterior teeth is common in dental practice. Problems, such as the tilting, drifting, and rotation of teeth adjacent to the space, complicate the restoration of apperance, and a normally simple restorative dental procedure may become difficult. There are two primary treatment alternatives to improving a dentition's irregular and spaced apperance-closing the space by orthodontic means or providing a prosthesis to disguise the space. The treatment choice depends on many variables, but, as a general rule, patients with a normal overbite, overjet, and buccal relationship are better treated by maintaining the sapce and providing a prosthesis, either fixed or removable. This case report presents two cases : Traumatic loss of maxillary right and left central incisors, Extraction of malformed mandibular right central inciosr. The loss of central incisor space was regained by the fixed-removable and fixed orthodontic appliance, and then Maryland bridge was cemented.
In the advance of computer technology, it is possible to keep all the related informations for monitoring equipments in control and huge amount of real time manufacturing data in a data base. Thus, the statistical analysis of large data sets with hundreds of thousands observations and hundred of independent variables whose some of values are missing at many observations is needed even though it is a formidable computational task. A tree structured approach to classification is capable of screening important independent variables and their interactions. In a Six Sigma project handling large amount of manufacturing data, one of the goals is to screen vital few variables among trivial many variables. In this paper we have reviewed and summarized CART, C4.5 and CHAID algorithms and proposed a simple method of screening vital few variables by selecting common variables screened by all the three algorithms. Also how to develop a logistics regression model on a large data set is discussed and illustrated through a large finance data set collected by a credit bureau for th purpose of predicting the bankruptcy of the company.
In this paper we develop nonparametric methods for regression analysis when the response variable is subject to censoring that arises naturally in quality engineering. This development is based on a general missing information principle that enables us to apply, via an iterative scheme, nonparametric regression techniques for complete data to iteratively reconstructed data from a given sample with censored observations. In particular, additive regression models are extended to right-censored data. This nonparametric regression method is applied to a simulated data set and the estimated smooth functions provide insights into the relationship between failure time and explanatory variables in the data.
We observed a total of 14 Mira variables as well as 4 late type variable stars for their SiO ${\nu}= 1$, J = 2 - 1 maser lines from April 1989 to November 1990 with the 13.7 m radio telescope at Daeduk Radio Astronomy Observatory. The maser intensity variations were the prime objective of the observations which well covered the periods of the variations. The origion of the variations were studied by comparing wi th those previousely measured in optical and infrared(IR) wavelengths and we confirmed that the intensity variations were in good correlation with those in V magnitude and IR intensity as previousely found in former investigators in general. However, for a few sources, we could find the missing maxima. The intensities themselves also were in good correlation with SiO ${\nu}\;=\;1$, J = 1 - 0 maser intensities observed in Yebes as expected. The good correlations indicate that the pumping source of the SiO maser is likely to be the IR emission in the masing regions and the "missing maxima" that are apparent in two particular sources are considered to relate wi th the strength of shocks arising from the eruptive mass-loss from central stars.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.