• Title/Summary/Keyword: Missing Data

검색결과 1,302건 처리시간 0.026초

암시적 피드백 데이터의 행렬 분해 기반 누락 데이터 모델링 (Missing Data Modeling based on Matrix Factorization of Implicit Feedback Dataset)

  • 기가기;정영지
    • 한국정보통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.495-507
    • /
    • 2019
  • 데이터 희소성은 추천 시스템의 주요 과제 중 하나이다. 추천 시스템에서는, 일부분만 관찰된 데이터이고 다른 부분은 데이터가 누락된 대용량 데이터를 포함하고 있다. 대부분의 연구에서는, 데이터 세트에서 무작위로 데이터가 누락되었다고 가정하고, 관찰된 데이터만을 사용하여 추천 모델을 학습함으로써 사용자에게 항목을 추천하고 있다. 그러나, 실제로는 누락된 데이터는 무작위로 손실되었다고 볼 수 없다. 본 연구에서는, 누락 된 데이터를 사용자적 관심의 부정적인 예라고 간주하였다. 또한, 3가지 샘플 접근 방식을 SVD++ 알고리즘과 결합하여 SVD++_W, SVD++_R 그리고 SVD++_KNN 알고리즘을 제안하였다. 실험결과를 통하여, 제안한 3가지 샘플 접근 방식이 기존의 기본적인 알고리즘 보다 Top-N 추천에서 정확성과 회수율을 효과적으로 향상시킬 수 있다는 것을 보였다. 특히, SVD++_KNN 가 가장 우수한 성능을 보였는데, 이는 KNN 샘플 접근 방식이 사용자적 관심의 부정적인 예를 추출하는데 가장 효율적인 방법이라는 것을 보여주었다.

Cell 방식 포장공정에서의 Missing Item 검사 및 관리 시스템 개발 (Development of Missing Item Detection and Management System under Cell Type Packaging Processes)

  • 김현우;최현의;안호균;윤태성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.344-346
    • /
    • 2009
  • Cell type packaging line is more suitable for the products with various models and small quantities like mobile phone or mp3 player than conveyor type packaging line. Cell type packaging line is applicable to package various product models, but it can cause wrong product compositions and missing of items. So, automatic missing item detection system is needed. We designed an missing item detection system with a bar code reader, infrared sensors, and s digital camera. and also developed the programs for sensor data acquisition, image data processing, GUI, and data management.

  • PDF

PhysioCover: Recovering the Missing Values in Physiological Data of Intensive Care Units

  • Kim, Sun-Hee;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제10권2호
    • /
    • pp.47-58
    • /
    • 2014
  • Physiological signals provide important clues in the diagnosis and prediction of disease. Analyzing these signals is important in health and medicine. In particular, data preprocessing for physiological signal analysis is a vital issue because missing values, noise, and outliers may degrade the analysis performance. In this paper, we propose PhysioCover, a system that can recover missing values of physiological signals that were monitored in real time. PhysioCover integrates a gradual method and EM-based Principle Component Analysis (PCA). This approach can (1) more readily recover long- and short-term missing data than existing methods, such as traditional EM-based PCA, linear interpolation, 5-average and Missing Value Singular Value Decomposition (MSVD), (2) more effectively detect hidden variables than PCA and Independent component analysis (ICA), and (3) offer fast computation time through real-time processing. Experimental results with the physiological data of an intensive care unit show that the proposed method assigns more accurate missing values than previous methods.

SVM과 딥러닝에서 불완전한 데이터를 처리하기 위한 알고리즘 (Algorithms for Handling Incomplete Data in SVM and Deep Learning)

  • 이종찬
    • 한국융합학회논문지
    • /
    • 제11권3호
    • /
    • pp.1-7
    • /
    • 2020
  • 본 논문은 불완전한 데이터를 처리하기 위해 2가지의 서로 다른 기법과 이를 학습하는 알고리즘을 소개한다. 첫째방법은 손실변수가 가질 수 있는 균등한 확률로 손실값을 할당하여 불완전한 데이터를 처리하고, SVM 알고리즘으로 이 데이터를 학습하는 것이다. 이 기법은 임의의 변수에 손실 값의 빈도가 높을수록 엔트로피가 높도록 하여 이 변수가 결정트리에서 선택되지 않도록 하는 것이다. 이 방법은 손실 변수에 남아있는 정보를 모두 무시하고 새로운 값을 할당한다는 특징이 있다. 이에 반해 새로운 방법은 손실 값을 제외하고 남아있는 정보로 엔트로피 확률을 구하고 이를 손실 변수의 추정 값으로 사용하는 것이다. 즉, 불완전한 학습데이터로부터 소실되지 않은 많은 정보들을 이용해 소실된 일부 정보를 복구하고 딥러닝을 이용해 학습한다. 이 2가지 방법은 학습데이터에서 차례로 변수 하나를 선택하고, 이 변수에 손실된 데이터의 비율을 달리하면서 서로 다른 측정값들의 결과들과 반복적으로 비교함으로써 성능을 측정한다.

A Study on Imputation using Adjusted Cohen Method

  • Chung, Sung-Suk;Chun, Young-Min;Lee, Sun-Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.871-888
    • /
    • 2006
  • Many studies have been done to develop procedures to deal with missing values. Most common method is to reassign the other values to the missing data. The purpose of our study is to suggest adjusted Cohen methods and to compare the efficiency of them with other methods through a simulation study. The adjusted Cohen methods use an auxiliary variable to arrange ranking of the variable with missing values. It leads to a reduced mean square error(MSE) compared with the Cohen method.

  • PDF

Iterative integrated imputation for missing data and pathway models with applications to breast cancer subtypes

  • Linder, Henry;Zhang, Yuping
    • Communications for Statistical Applications and Methods
    • /
    • 제26권4호
    • /
    • pp.411-430
    • /
    • 2019
  • Tumor development is driven by complex combinations of biological elements. Recent advances suggest that molecularly distinct subtypes of breast cancers may respond differently to pathway-targeted therapies. Thus, it is important to dissect pathway disturbances by integrating multiple molecular profiles, such as genetic, genomic and epigenomic data. However, missing data are often present in the -omic profiles of interest. Motivated by genomic data integration and imputation, we present a new statistical framework for pathway significance analysis. Specifically, we develop a new strategy for imputation of missing data in large-scale genomic studies, which adapts low-rank, structured matrix completion. Our iterative strategy enables us to impute missing data in complex configurations across multiple data platforms. In turn, we perform large-scale pathway analysis integrating gene expression, copy number, and methylation data. The advantages of the proposed statistical framework are demonstrated through simulations and real applications to breast cancer subtypes. We demonstrate superior power to identify pathway disturbances, compared with other imputation strategies. We also identify differential pathway activity across different breast tumor subtypes.

결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델 (Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates)

  • 육태미;송주원
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.279-291
    • /
    • 2012
  • 공변량에 결측이 발생한 Cox 비례위험 모형을 적합할 때, 결측이 발생하는 개체를 모두 제거한 후 분석을 실시한다면 정보 손실에 의해 비효율적이고 결측의 발생 메커니즘이 완전 임의 결측(missing completely at random; MCAR)이 아니라면 모수의 추정값에 편향이 발생할 수 있다. Cox 비례위험 회귀모형의 공변량에 결측이 있는 경우 적용할 수 있는 여러 가지 방법들이 제안되어져 왔으나 이 분석들은 선택모델(selection model)에 기반하고 있다. 본 연구에서는 Little (1993)이 제안한 패턴-혼합 모델(pattern-mixture model)을 사용하여 Cox 비례위험 회귀모형에서 생존시간과 결측 메커니즘의 결합분포를 모델화 하고, 여러 가지 제약에 근거한 생존 분석의 결과를 비교하였다. 모의실험을 통해서 패턴-혼합 모델의 제약(restrictions)에 따른 모수 추정의 민감도를 확인하였고 결측을 무시한 채 분석한 결과 및 선택모형에 근거한 분석결과와 비교하였다. 패턴-혼합 모델의 제약에 따라 공변량의 결측으로 인한 모수 추정의 민감성 정도를 쥐백혈병 자료 예제를 통해 설명하였다.

보건조사연구에서 다변량결측치가 내포된 자료를 효율적으로 분석하기 위한 통계학적 방법 (Statistical Methods for Multivariate Missing Data in Health Survey Research)

  • 김동기;박은철;손명세;김한중;박형욱;안재형;임종건;송기준
    • Journal of Preventive Medicine and Public Health
    • /
    • 제31권4호
    • /
    • pp.875-884
    • /
    • 1998
  • Missing observations are common in medical research and health survey research. Several statistical methods to handle the missing data problem have been proposed. The EM algorithm (Expectation-Maximization algorithm) is one of the ways of efficiently handling the missing data problem based on sufficient statistics. In this paper, we developed statistical models and methods for survey data with multivariate missing observations. Especially, we adopted the EM algorithm to handle the multivariate missing observations. We assume that the multivariate observations follow a multivariate normal distribution, where the mean vector and the covariance matrix are primarily of interest. We applied the proposed statistical method to analyze data from a health survey. The data set we used came from a physician survey on Resource-Based Relative Value Scale(RBRVS). In addition to the EM algorithm, we applied the complete case analysis, which uses only completely observed cases, and the available case analysis, which utilizes all available information. The residual and normal probability plots were evaluated to access the assumption of normality. We found that the residual sum of squares from the EM algorithm was smaller than those of the complete-case and the available-case analyses.

  • PDF

Rank Tests for Multivariate Linear Models in the Presence of Missing Data

  • Lee, Jae-Won;David M. Reboussin
    • Journal of the Korean Statistical Society
    • /
    • 제26권3호
    • /
    • pp.319-332
    • /
    • 1997
  • The application of multivariate linear rank statistics to data with item nonresponse is considered. Only a modest extension of the complete data techniques is required when the missing data may be thought of as a random sample, and an appropriate modification of the covariances is derived. A proof of the asymptotic multivariate normality is given. A review of some related results in the literature is presented and applications including longitudinal and repeated measures designs are discussed.

  • PDF

The Interpolation Method for the missing AIS Data of Ship

  • Nguyen, Van-Suong;Im, Nam-kyun;Lee, Sang-min
    • 한국항해항만학회지
    • /
    • 제39권5호
    • /
    • pp.377-384
    • /
    • 2015
  • The interpolation of missing AIS data can be used for recovering the lost data of a ship's state which is then able to produce useful information for VTS stations or other ships. Previous research has introduced some interpolating methods however there are some problems with regard to missing AIS data. This paper proposes one new method which includes linear interpolation, cubic Hermit interpolation and an identification mechanism to overcome some of those limitations, first AIS data regarding ship position, COG, SOG and HDG is divided into separate time series, then the characteristic of the missing data is investigated into through using an identification mechanism, an appropriate interpolation is selected to fit all the time series which matches the characteristics. Numerical experiments are carried out using real AIS data to validate the algorithm of this approach and the results are compared with the previous method, after which the actual missing area is suggested to be interpolated by the proposed method. The interpolation results show this approach can be applied well in practice.