• Title/Summary/Keyword: Missing Data

Search Result 1,302, Processing Time 0.027 seconds

On statistical Computing via EM Algorithm in Logistic Linear Models Involving Non-ignorable Missing data

  • Jun, Yu-Na;Qian, Guoqi;Park, Jeong-Soo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.181-186
    • /
    • 2005
  • Many data sets obtained from surveys or medical trials often include missing observations. When these data sets are analyzed, it is general to use only complete cases. However, it is possible to have big biases or involve inefficiency. In this paper, we consider a method for estimating parameters in logistic linear models involving non-ignorable missing data mechanism. A binomial response and normal exploratory model for the missing data are used. We fit the model using the EM algorithm. The E-step is derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. Asymptotic variances of the MLE's are derived and the standard error and estimates of parameters are compared.

  • PDF

A Missing Data Imputation by Combining K Nearest Neighbor with Maximum Likelihood Estimation for Numerical Software Project Data (K-NN과 최대 우도 추정법을 결합한 소프트웨어 프로젝트 수치 데이터용 결측값 대치법)

  • Lee, Dong-Ho;Yoon, Kyung-A;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2009
  • Missing data is one of the common problems in building analysis or prediction models using software project data. Missing imputation methods are known to be more effective missing data handling method than deleting methods in small software project data. While K nearest neighbor imputation is a proper missing imputation method in the software project data, it cannot use non-missing information of incomplete project instances. In this paper, we propose an approach to missing data imputation for numerical software project data by combining K nearest neighbor and maximum likelihood estimation; we also extend the average absolute error measure by normalization for accurate evaluation. Our approach overcomes the limitation of K nearest neighbor imputation and outperforms on our real data sets.

The effect of missing levels of nesting in multilevel analysis

  • Park, Seho;Chung, Yujin
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.34.1-34.11
    • /
    • 2022
  • Multilevel analysis is an appropriate and powerful tool for analyzing hierarchical structure data widely applied from public health to genomic data. In practice, however, we may lose the information on multiple nesting levels in the multilevel analysis since data may fail to capture all levels of hierarchy, or the top or intermediate levels of hierarchy are ignored in the analysis. In this study, we consider a multilevel linear mixed effect model (LMM) with single imputation that can involve all data hierarchy levels in the presence of missing top or intermediate-level clusters. We evaluate and compare the performance of a multilevel LMM with single imputation with other models ignoring the data hierarchy or missing intermediate-level clusters. To this end, we applied a multilevel LMM with single imputation and other models to hierarchically structured cohort data with some intermediate levels missing and to simulated data with various cluster sizes and missing rates of intermediate-level clusters. A thorough simulation study demonstrated that an LMM with single imputation estimates fixed coefficients and variance components of a multilevel model more accurately than other models ignoring data hierarchy or missing clusters in terms of mean squared error and coverage probability. In particular, when models ignoring data hierarchy or missing clusters were applied, the variance components of random effects were overestimated. We observed similar results from the analysis of hierarchically structured cohort data.

Comparison of binary data imputation methods in clinical trials (임상시험에서 이분형 결측치 처리방법의 비교연구)

  • An, Koosung;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.539-547
    • /
    • 2016
  • We discussed how to handle missing binary data clinical trials. Patterns of occurring missing data are discussed and introduce missing binary data imputation methods that include the modified method. A simulation is performed by modifying actual data for each method. The condition of this simulation is controlled by a response rate and a missing value rate. We list the simulation results for each method and discussed them at the end of this paper.

EXTENSION OF FACTORING LIKELIHOOD APPROACH TO NON-MONOTONE MISSING DATA

  • Kim, Jae-Kwang
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2004
  • We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Rubin (1974), is extended to a more general case of non-monotone missing data. The proposed method is algebraically equivalent to the Newton-Raphson method for the observed likelihood, but avoids the burden of computing the first and the second partial derivatives of the observed likelihood. Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method.

A Study on Automatic Missing Value Imputation Replacement Method for Data Processing in Digital Data (디지털 데이터에서 데이터 전처리를 위한 자동화된 결측 구간 대치 방법에 관한 연구)

  • Kim, Jong-Chan;Sim, Chun-Bo;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.245-254
    • /
    • 2021
  • We proposed the research on an analysis and prediction model that allows the identification of outliers or abnormality in the data followed by effective and rapid imputation of missing values was conducted. This model is expected to analyze efficiently the problems in the data based on the calibrated raw data. As a result, a system that can adequately utilize the data was constructed by using the introduced KNN + MLE algorithm. With this algorithm, the problems in some of the existing KNN-based missing data imputation algorithms such as ignoring the missing values in some data sections or discarding normal observations were effectively addressed. A comparative evaluation was performed between the existing imputation approaches such as K-means, KNN, MEI, and MI as well as the data missing mechanisms including MCAR, MAR, and NI to check the effectiveness/efficiency of the proposed algorithm, and its superiority in all aspects was confirmed.

An Approach to Survey Data with Nonresponse: Evaluation of KEPEC Data with BMI (무응답이 있는 설문조사연구의 접근법 : 한국노인약물역학코호트 자료의 평가)

  • Baek, Ji-Eun;Kang, Wee-Chang;Lee, Young-Jo;Park, Byung-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.2
    • /
    • pp.136-140
    • /
    • 2002
  • Objectives : A common problem with analyzing survey data involves incomplete data with either a nonresponse or missing data. The mail questionnaire survey conducted for collecting lifestyle variables on the members of the Korean Elderly Phamacoepidemiologic Cohort(KEPEC) in 1996 contains some nonresponse or missing data. The proper statistical method was applied to evaluate the missing pattern of a specific KEPEC data, which had no missing data in the independent variable and missing data in the response variable, BMI. Methods : The number of study subjects was 8,689 elderly people. Initially, the BMI and significant variables that influenced the BMI were categorized. After fitting the log-linear model, the probabilities of the people on each category were estimated. The EM algorithm was implemented using a log-linear model to determine the missing mechanism causing the nonresponse. Results : Age, smoking status, and a preference of spicy hot food were chosen as variables that influenced the BMI. As a result of fitting the nonignorable and ignorable nonresponse log-linear model considering these variables, the difference in the deviance in these two models was 0.0034(df=1). Conclusion : There is a lot of risk if an inference regarding the variables and large samples is made without considering the pattern of missing data. On the basis of these results, the missing data occurring in the BMI is the ignorable nonresponse. Therefore, when analyzing the BMI in KEPEC data, the inference can be made about the data without considering the missing data.

Robust Speech Recognition Using Missing Data Theory (손실 데이터 이론을 이용한 강인한 음성 인식)

  • 김락용;조훈영;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, we adopt a missing data theory to speech recognition. It can be used in order to maintain high performance of speech recognizer when the missing data occurs. In general, hidden Markov model (HMM) is used as a stochastic classifier for speech recognition task. Acoustic events are represented by continuous probability density function in continuous density HMM(CDHMM). The missing data theory has an advantage that can be easily applicable to this CDHMM. A marginalization method is used for processing missing data because it has small complexity and is easy to apply to automatic speech recognition (ASR). Also, a spectral subtraction is used for detecting missing data. If the difference between the energy of speech and that of background noise is below given threshold value, we determine that missing has occurred. We propose a new method that examines the reliability of detected missing data using voicing probability. The voicing probability is used to find voiced frames. It is used to process the missing data in voiced region that has more redundant information than consonants. The experimental results showed that our method improves performance than baseline system that uses spectral subtraction method only. In 452 words isolated word recognition experiment, the proposed method using the voicing probability reduced the average word error rate by 12% in a typical noise situation.

  • PDF

Comparing Accuracy of Imputation Methods for Categorical Incomplete Data (범주형 자료의 결측치 추정방법 성능 비교)

  • 신형원;손소영
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2002
  • Various kinds of estimation methods have been developed for imputation of categorical missing data. They include category method, logistic regression, and association rule. In this study, we propose two fusions algorithms based on both neural network and voting scheme that combine the results of individual imputation methods. A Mont-Carlo simulation is used to compare the performance of these methods. Five factors used to simulate the missing data pattern are (1) input-output function, (2) data size, (3) noise of input-output function (4) proportion of missing data, and (5) pattern of missing data. Experimental study results indicate the following: when the data size is small and missing data proportion is large, modal category method, association rule, and neural network based fusion have better performances than the other methods. However, when the data size is small and correlation between input and missing output is strong, logistic regression and neural network barred fusion algorithm appear better than the others. When data size is large with low missing data proportion, a large noise, and strong correlation between input and missing output, neural networks based fusion algorithm turns out to be the best choice.

Comparison of Shape Variability in Principal Component Biplot with Missing Values

  • Shin, Sang-Min;Choi, Yong-Seok;Lee, Nae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.1109-1116
    • /
    • 2008
  • Biplots are the multivariate analogue of scatter plots. They are useful for giving a graphical description of the data matrix, for detecting patterns and for displaying results found by more formal methods of analysis. Nevertheless, when some values are missing in data matrix, most biplots are not directly applicable. In particular, we are interested in the shape variability of principal component biplot which is the most popular in biplots with missing values. For this, we estimate the missing data using the EM algorithm and mean imputation according to missing rates. Even though we estimate missing values of biplot of incomplete data, we have different shapes of biplots according to the imputation methods and missing rates. Therefore we propose a RMS(root mean square) for measuring and comparing the shape variability between the original biplots and the estimated biplots.