• Title/Summary/Keyword: Missile Model

Search Result 271, Processing Time 0.026 seconds

Compensation of SDINS Navigation Errors Using Line-Of-Sight Vector (시선벡터를 이용한 관성항법장치의 보정기법)

  • Lim, You-Chol;Yim, Jong-Bin;Lyou, Joon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2521-2524
    • /
    • 2003
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors (accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range missile missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System (SDINS) using Line-Of-Sight(LOS) vector from star sensor. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the bounded-ness of position and attitude errors.

  • PDF

Expected Miss Distance Concept and Its Applications to Aircraft Guidance Law for Arbitrary Flight Trajectory Tracking (기동오차 개념을 이용한 임의형상 비행궤적 추종을 위한 유도법칙에 관한 연구)

  • 민병문;노태수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.478-488
    • /
    • 2003
  • A guidance scheme that is suitable for controlling the aircraft flight path is proposed. The concept of miss distance which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the aircraft's trajectory-tracking guidance law. Guidance commands are given in terms of speed and flight path angles, but they perfectly reflect any position and velocity errors between real aircraft trajectory and reference one. The proposed guidance law is easily integrated into the existing flight control system. The new guidance law was extensively tested with various mission scenarios and the fully nonlinear 6-DOF aircraft model. Furthermore, the new guidance law was compared with previous guidance schemes in nonlinear simulation. Results from the numerical simulation show that the proposed guidance law yields better performance than previous ones.

Calculating Dynamic Derivatives of Flight Vehicle with New Engineering Strategies

  • Mi, Baigang;Zhan, Hao;Chen, Baibing
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • This paper presents new differential methods for computing the combined and single dynamic stability derivatives of flight vehicle. Based on rigid dynamic mesh technique, the combined dynamic stability derivative can be achieved by imposing the aircraft pitching to the same angle of attack with two different pitching angular velocities and also translating it to the same additional angle of attack with two different rates of angle of attack. As a result, the acceleration derivative is identified. Moreover, the rotating reference frame is adopted to calculate the rotary derivatives when simulating the steady pull-up with different pitching angular velocities. Two configurations, the Hyper Ballistic Shape (HBS) and Finner missile model, are considered as evaluations and results of all the cases agree well with reference or experiment data. Compared to traditional ones, the new differential methods are of high efficiency and accuracy, and potential to be extended to the simulation of combined and single stability derivatives of directional and lateral.

Roof tile frangibility and puncture of metal window shutters

  • Laboy-Rodriguez, Sylvia T.;Smith, Daniel;Gurley, Kurtis R.;Masters, Forrest J.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.185-202
    • /
    • 2013
  • The goal of this study was to investigate the vulnerability of roof tile systems and metal shutters to roof tile debris. Three phases addressed the performance of tile roof systems and metal shutters impacted by roof tile debris. The first phase experimentally evaluated the tile fragment size and quantity generated by a tile striking a tile roof system. The second phase experimentally quantified the puncture vulnerability of common metal panel shutter systems as a function of tile fragment impact speed. The third phase provided context for interpretation of the experimental results through the use of a tile trajectory model. The results provide supporting evidence that while metal panel window shutters provide significant protection against a prevalent form of windborne debris, these systems are vulnerable to tile fragment puncture in design level tropical cyclones. These findings correlate with field observations made after Hurricane Charley (2004).

Control of Plume Interference Using a Porous Extension (다공확장벽을 이용한 플룸간섭의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.95-98
    • /
    • 2003
  • The physics of the plume-induced shock and separation particulary at a high plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with aid without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG k-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The courol methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated. The computational results show the main effect of the porous extension on plume-afterbody interactions is to in the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect on plume interference.

  • PDF

Development of a gas generator to obtain highly progressive performance using bundle cylindrical grains (Highly progressive 성능을 위한 다발 원통형 그레인 가스발생기 개발)

  • Oh, Seok-Jin;Cha, Hong-Seok;Lee, Yeung-Jo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.141-144
    • /
    • 2009
  • This paper presents an achieving method of highly progressive pressure gradient to enhance the missile ejection system's performance by using a gas generator. To obtain a stable burning, the decrease of a grain's L/D is proposed except making radial holes through the grain. New approach by applying adjustment of a grain's L/D reduces the maximum acceleration level by about 33% than that of reference model.

  • PDF

Decision Making Support Model for Optimal Location of Anti-Tactical Ballistic missile (탄도미사일 방어무기의 최적배치를 위한 의사결정지원모델)

  • Yun Yong-Bok;Kim Gi-Beom;Jeong Bong-Ju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1715-1721
    • /
    • 2006
  • 기존의 탄도미사일 방어무기의 배치와 관련된 대부분의 연구들은 배치규모가 결정된 상태에서 후보지 중 최적위치를 구하는 것이 일반적이며, 방어확률이 최대가 되는 것을 목적으로 하는 확률적 부분담당모델의 개념을 적용한다. 본 연구에서는 무기의 도입 및 배치를 담당하는 의사결정자들에게 보다 많은 상황과 변수를 가정할 수 있도록 하는 의사결정모델을 제안한다. 모델에는 기존에 고려하지 않았던 후보지의 수준 및 방호시설의 최소방어요구수준 등이 포함되어 있으며, 모델은 의사결정자들이 결정하는 결정변수에 따라 각기 다른 방어무기의 위치와 규모 및 방어확률을 제시 하게 된다. 모델의 결과로 제시되는 내용은 무기체계의 최초소요제기 단계에서 필요규모와 위치를 결정하고 또한, 그 결과 값이 최초계획단계의 대략적 무기배치규모와 상이할 경우는 그 값이 필요성과 타당성을 가질 수 있는 수치적 분석을 제공해 준다.

  • PDF

A study onthe stability of a missile body ina simplified model by finite element method (유한요소법에 의한 단순화된 미사일 몸체 모델의 안정성에 관한 연구)

  • ;;Kim, Chan Soo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.293-302
    • /
    • 1981
  • In this paper, the stability of a flexible missle, idealized as a free-free beam, is evaluated by using the finite element method. For the study, heavy machinery part is modeled as a concentrated mass and the thrust, which is controlled by a feedback sensor located at a predetermined position, is considered as a constant follower force. The aerodynamic forces, the structural damping, the cross sectional variation servo lag effect are neglected in this study. With unconstrained variational principle, the finite element method is applied to the nondimensionalized beam eqution. The matrix eigenvalue equation is obtained and the eigenvalues are calculated by a computer for the stability analysis. The stability is evaluated by the inspection of the eigenvalues are calculated by a computer for the stabilith analysis. The stabilith is evaluated by the inspection of the eigenvalues of the problem. For the study, the behaviors of the eigenvalues at various thrusts and the effects of the magnitudes and positions of the concentrated mass and directional control constant are analyzed.

Design of disturbance observer and sliding mode controller for the hovering system of underwater vehicles (수중운동체의 호버링시스템을 위한 외란 관측기 및 슬라이딩 모드 제어기 설계)

  • Kim, Jong-Sik;Kim, Sung-Min;Yang, Hwa-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.40-45
    • /
    • 1997
  • A robust disturbance rejection controller for the hovering motion of underwater vehicles in near the surface of sea is presented. The suggested controller consists of two control parts, the one is disturbance observer for taking into account the effects of sea wave and missile-launching forces, and the other is sliding mode controller for the robust stability of underwater vehicles with model uncertainties and nonlinearities. It is shown that the sliding mode control system with disturbance observer is more effective compared with the sliding mode control system, especially in case that large sea wave force is affected.

  • PDF

Design of Missile Autopilot using Intelligent Control Techniques (지능 제어 기법을 이용한 유도탄 자동 조종 장치 설계)

  • 김윤식;한웅기;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.458-463
    • /
    • 1998
  • This paper presents an autopilot design method for STT missiles using the intelligent control technique and multiple controllers. The mixed $H_2/H_{\infty}$ control technique is applied for each controller design and the control gains are implemented by using the genetic searching algorithm. To facilitate automatic switching of multiple controllers under different operating conditions, an error based switching scheme is also combined with the multiple controllers at a higher level, which constitutes a hierarchical intelligent control system. It is shown via computer simulation that the proposed autopilot outperforms the conventional one.

  • PDF