• Title/Summary/Keyword: Misfit dislocation

Search Result 23, Processing Time 0.026 seconds

Nanoindentation on the Layered Ag/Cu for Investigating Slip of Misfit Dislocation (나노인덴테이션 해석을 통한 Ag/Cu층에서 발생하는 Misfit 전위의 slip 특성에 대한 연구)

  • Trandinh, Long;Ryu, Yong-Moon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.17-24
    • /
    • 2011
  • The EAM simulation of nanoindentation was performed to investigate misfit dislocation slip in the Ag/Cu. The film layer, whose thickness in the range of 2-5nm, was indented by a spherical indenter with the N$\'{o}$se-Hoover thermostat condition. The simulation shows that the indentation position relative to misfit dislocation (MFD) has the effect on the dislocation, glide up or cross slip, for Ag film layer thickness less than 4 nm. Elastic energy variation during MFDs slip was revealed to be a key factor for the softening of Ag/Cu. The critical film layer thickness was evaluated for each case of Ag/Cu according to the spline extrapolation technique.

A Study on Misfit Dislocation Generation in InAs Epilayers Grown on InP Substrates by Metalorganic Chemical-Vapor Deposition (MOCVD방법으로 InP 기판 위에 성장시킨 InAs 박막에서의 부정합 전위 생성 연구)

  • Kim, Jwa-Yeon;Yun, Eui-Jung;Park, Kyeong-Soon
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.483-488
    • /
    • 1997
  • A misfit dislocation generation in InAs epilayers grown on (001) InP substrates (oriented $2^{\circ}$ off (001) toward the [110] direction) using metalorganic chemical-vapor deposition was studied. The InAs film of 17 nm thickness grown at $405^{\circ}C$ showed the three different arrays of dislocations: a straight orthogonal array to the <110> direction, an array to the >100> direction, and an array tilted by a degree of $5\sim45^{\circ}$ from the [110] direction. All of the dislocations had a/2<101> Burgers vectors inclined $45^{\circ}$ to the interface. Upon annealing at $660^{\circ}C$ the InAs films with 60, 140 and 220 nm thicknesses, most of the misfit dislocations became the Lomer type $(\sim100%)$ oriented exactly along the >110> direction. These misfit dislocation spacings were decreased with increasing the InAs thickness up to 220 nm thickness. This phenomena was interpreted by the relationship between the dislocation interaction energy among parallel misfit dislocations and the opposite remnant InAs epilayer strain energy. The distance between misfit dislocations was measured by transmission electron microscopy.

  • PDF

Atomic Structure Analysis of A ZnO/Pd Interface by Atomic Resolution HVTEM

  • Saito, Hiromitsu;Ichinose, Hideki
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.41-46
    • /
    • 2006
  • Interfacial atomic structure (chemical structure) of a Pd/ZnO hetero junction was investigated by atomic resolution high voltage transmission electron microscopy (ARHVTEM). A misfit dislocation did not work as a stress accommodation mechanism in the ZnO(0001)/Pd (111) interface. But the periodic stress localization occurred in the ZnO($10\bar{1}0$)/(200) interface. The periodicity of the local strain coincided with that of misfit dislocation. Atomic structure image of the ARHVTEM showed that an atomic arrangement across the interface was in the order of O-Zn-Pd. It was shown that mechanical weakness of the ZnO(0001)/Pd(111) interface against cyclic heating is attributable to the absence of the periodic stress localization of the misfit dislocation.

MOLECULAR DYNAMICS SIMULATION OF INDENTATION ON SILVER COATED COPPER NANOSTRUCTURE

  • Kim, Am-Kee;Trandinh, Long;Kim, Il-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1794-1799
    • /
    • 2008
  • The effect of misfit on the indentation behaviour of silver coated copper multilayer was studied by molecular dynamics simulation. It was found that the misfit bands on interface formed by the mismatch of lattice structure between copper and silver in slip direction [110] and the dislocation band width depended on the mismatched lattice constants of materials. More dislocations were created and glided by indentation, which created a "four-wing flower" structure consisting of pile. up of dislocation at the interface. The size of "flower" depended on the thickness of silver layer. The critical thickness for "flower" was approximately 4nm above which the "flower" disappeared. As the result, deformation mechanisms such as dislocation pile-up, dislocation cross-slip and movement of misfit dislocation were revealed. Only silver atoms in the dislocation pile-up were involved in the creation of the "flower" while the dislocations in copper were glided in slip direction on interface.

  • PDF

Study on Misfit Dislocations and Critical Thickness in a $Si_xGe_{1-x}$ Epitaxial Film on a Si Substrate (Si 모재 위의 $Si_xGe_{1-x}$ 박막에서 부정합 전위와 임계두께에 관한 연구)

  • Shin, J.H.;Kim, J.H.;Earmme, Y.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.298-303
    • /
    • 2001
  • The critical thickness of an epitaxial film on a substrate in electronic or optoelectronic devices is studied on the basis of equilibrium dislocation analysis. Two geometric models, a single dislocation and an array of dislocations in heteroepitaxial system, are considered respectively to calculate the misfit dislocation formation energy. The isotropic linearly elastic stress fields for the models are obtained by means of complex potential method combined with alternating technique, and are used for calculating the formation energies. As a result, the effect of elastic mismatch between film and substrate on critical thickness is presented and $Si_xGe_{1-x}/Si$ epitaxial structure is analyzed to predict the critical thickness with varying germanium concentration.

  • PDF

Investigation of Strain Field on a Misfit Dislocation in a Strained Si Layer Using the CFTM Method (CFTM 방법을 이용한 Si 박막과 격자불일치 전위결함의 변형률 분포에 대한 고찰)

  • Chang, Wonjae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.757-761
    • /
    • 2017
  • The computational fourier-transform moire (CFTM) method has been briefly explained and this method was used to perform strain analysis of a misfit dislocation in a strained $Si/Si_{0.55}Ge_{0.45}$ layer. An essential advantage of the CFTM method is that it does not require unwrapping, such that errors due to improper unwrapping can be excluded. The analysis results revealed that the Si layer was grown with tensile stress on $Si_{0.55}Ge_{0.45}$ and lattice constant of the Si layer along the growth direction was 1.9% smaller than that of $Si_{0.55}Ge_{0.45}$. On the other hand, strain of the misfit dislocation in the strained $Si/Si_{0.55}Ge_{0.45}$ layer was maximum at the dislocation core due to an extra half-plane and the $e_{xx}$ and $e_{yy}$ values were positive and negative, respectively, along the direction of a burgers vector.

Characterization of Planar Defects in Annealed SiGe/Si Heterostructure

  • Lim, Young-Soo;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.699-702
    • /
    • 2009
  • Due to the importance of the SiGe/Si heterostructure in the fields of thermoelectric and electronic applications, SiGe/Si heterostructures have been extensively investigated. For practical applications, thermal stability of the heterostructure during the thermoelectric power generation or fabrication process of electronic devices is of great concern. In this work, we focused on the effect of thermal annealing on the defect configuration in the SiGe/Si heterostructure. The formation mechanism of planar defects in an annealed SiGe/Si heterostructure was investigated by transmission electron microscopy. Due to the interdiffusion of Si and Ge, interface migration phenomena were observed in annealed heterostructures. Because of the strain gradient in the migrated region between the original interface and the migrated interface, the glide of misfit dislocation was observed in the region and planar defects were produced by the interaction of the gliding misfit dislocations. The planar defects were confined to the migrated region, and dislocation pileup by strain gradient was the origin of the confinement of the planar defect.

XTEM Study of 1 MeV Argon Ion Implantation Induced Defects in Si and Their Annealing Behavior (1MeV Argon 이온주입에 의해 유기되 결합 및 회복기구의 XTEM 분석)

  • ;;;;;Hiroshi Kuwano
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.42-48
    • /
    • 1993
  • Ar ions were implanted at 1 MeV into (100)Cz Si wafers with dose of 1 * 10$^{15}$ ions/cm$^{2}$. Damage induced by high energy implantation and its annealing behavior during rapid thermal annealing for 10sec at temperatures from 550 to 1100${\circ}C$ were investigated by crosssection transmission electron microscopy study. It can be clearly seen from the observation that the SPE(Solid Phase Epitaxy) regrowth of the buried amorphous layer induced by ion implantation proceeds from both upper and lower amorphous/crystalline (a/c) interfaces, and the activation energy for SPE from interfaces were both 1.43eV. Misfit dislocation where two interfaces met was formed and it coalesced into the hair pin dislocation in the upper regrown region. At the higher temperature after annealing out of the misfit dislocation, hair pin dislocations showed considerable drop in its bandwidth. However, they were not disappeared even at the temperature 1100${\circ}C$ with the end of range dislocation loops which were formed at the original lower a/c interface.

  • PDF

Nanoindentation behaviours of silver film/copper substrate (Ag 필름/ Cu기판의 나노인덴테이션 거동 해석)

  • Trandmh, Long;Kim, Am-Kee;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.9-17
    • /
    • 2009
  • Nanoindentation behaviours on the films of softer Ag film/harder Cu substrate structure were studied by the molecular dynamics method. As a result, it was shown that the stiffness and hardness of films were strongly dependent on the thickness of films. The stiffness and hardness increased with the thickness of film within a critical range as an inverse Hall-Petch relation. The stiffness and hardness of Cu substrate with Ag film less than 5 nm were observed to be lower than those of bulk silver. In particular, the flower-like dislocation loop was created on the interface by the interaction between dislocation pile-up and misfit dislocation during the indentation of Ag film/Cu substrate with film thickness less than 4 nm, which seemed to be associated with the drop of load in the indentation load versus displacement curve.

Suppression of misfit dislocations in heavily boron-doped silicon layers for micro-machining (마이크로 머시닝을 위한 고농도로 붕소가 도핑된 실리콘 층의 부정합 전위의 억제)

  • 이호준;김하수;한철희;김충기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.96-113
    • /
    • 1996
  • It has been found that the misfit dislocations in heavily boron-doped layers originate from wafer edges. Moreover, the propagation of the misfit dislocation into a heavily boron-doped region can be suppressed by placing a surrounding undoped region. Using a surrounding undoped region the disloction-free heavily boron-deoped silicon membranes have been fabricated. The measured surface roughness, fracture strength, and residual tensile stress of the membrane are 20.angs. peak-to-peak, 1.39${\times}$10$^{10}$ and 2.7${\times}$10$^{9}$dyn/cm$^{2}$, while those of the conventional heavily boron-doped silicon membrane with high density of misfit dislocations are 500 peak-to-peak, 8.27${\times}$10$^{9}$ and 9.3${\times}$10$^{8}$dyn/cm$^{2}$ respectively. The differences between these two membranes are due to the misfit dislocations. Young's modulus has been extracted as 1.45${\times}$10$^{12}$dyn/cm$^{2}$ for both membranes. Also, the effective lattice constant of heavily boron-doped silicon, the in-plane lattice constant of the conventional membrane, and the density of misfit dislocation contained in the conventional membrane have been extracted as density of misfit dislocation contained in the conventional membrane have been extracted as density of misfit dislocation contained in the conventional membrane have been extracted as 5.424.angs. 5.426.angs. and 2.3${\times}$10$^{4}$/cm for the average boron concentration of 1.3${\times}$10$^{20}$/cm$^{-23}$ cm$^{3}$/atom. Without any buffer layers, a disloction-free lightly boron-doped epitaxial layer with good crsytalline quality has been directly grown on the dislocation-free heavily boron-doped silicon layer. X-ray diffraction analysis revealed that the epitaxial silicon has good crystallinity, similar to that grown on lightly doped silicon substrate. The leakage current of the n+/p gated diode fabricated in the epitaxial silicon has been measured to be 0.6nA/cm$^{2}$ at the reverse bias of 5V.

  • PDF