• 제목/요약/키워드: Misclassification Rate

검색결과 68건 처리시간 0.023초

A Study on Acute Effects of Ambient Air Particles on Pulmonary Function of Schoolchildren in Ulsan

  • Yu, Seung-Do;Kim, Dae-Seon;Cha, Jung-Hoon;Ahn, Seung-Chul;Lee, Jong-Tae
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.183-186
    • /
    • 2003
  • To evaluate the effect of air pollution on respiratory health in children, we conducted a longitudinal study in which children were asked to record their daily levels of peak expiratory flow rate using potable peak flow meter (mini-Wright) far 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in you, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of PM$\_$10/ and PM$\_$2.5/ over the study period were 64.9$\mu\textrm{g}$/㎥ and 46. l$\mu\textrm{g}$/㎥, respectively. The range of daily measured PEFR in this study was 170-481 l/min. Daily mean PEFR was regressed with the 24-hour. average PM$\_$10/ (or PM$\_$2.5/) levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of PM$\_$10/ or PM$\_$2.5/ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min (95% Cl -1.8, 0.1) decline in PEFR. Even though this study shows negative findings on the relationship between respiratory function and air particles, it is worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely results in misclassification of true exposure levels and this is the first Korean study that PM$\_$2.5/ measurement is applied as an index of air particle quality.

  • PDF

PfSGA를 이용한 MLP분류기의 구조 학습 및 수화인식에의 응용 (A Structural Learning of MLP Classifiers Using PfSGA and Its Application to Sign Language Recognition)

  • 김상운;신성효
    • 전자공학회논문지C
    • /
    • 제36C권11호
    • /
    • pp.75-83
    • /
    • 1999
  • 주어진 응용에 적합한 MLP 분류기의 위상 구조를 효율적으로 학습하기 위하여 종족 유전 알고리즘 (SGA)과 파라미터 프리 유전 알고리즘(PfGA)을 결합한 파라미터 프리 종족 유전 알고리즘(PfSGA)을 제안한다. SGA는 전체 탐색 공간을 은닉층 뉴런의 수에 따라 여러 개의 영역(종족)으로 분할한 후, 학습 과정 중 기준에 미달되는 종족에 대해서는 학습을 중단시킴으로써 불필요한 탐색을 줄이는 학습법이다. 그러나 SGA는 돌연변이나 교배 확률 등 학습 파라미터 설정에 따라 분류기의 성능이 달라진다. 따라서 이 논문에서는 SGA와 PfGA를 결합하여 파라미터 설정에 무관하도록 하였다. 벤치마크 데이터와 수화 단어에 대하여 실험한 결과 PfSGA는 기존의 SGA에 비해 학습 시간을 단축시킬 수 있으며, 파라미터의 설정에 영향을 받지 않았다. 또한 기존의 방법에 비해 오인식율과 위상 구조 등에 있어서 효율적임을 확인하였다.

  • PDF

주성분 분석과 이차 판별 분석 기법을 이용한 항공기 복합재료에서의 자동 결함 검출 및 분류 (Automatic Defect Detection and Classification Using PCA and QDA in Aircraft Composite Materials)

  • 김영범;신덕하;황승준;백중환
    • 한국항행학회논문지
    • /
    • 제18권4호
    • /
    • pp.304-311
    • /
    • 2014
  • 본 논문에서는 항공기 복합재료 내부의 결함을 자동으로 검출하고 분류하는 초음파 검사 방식을 제안한다. 결함 검출을 위해서 초음파의 국부 최대값을 이용해 피크(peak) 값을 추출해낸다. 피크의 거리정보를 이용해 히스토그램화 하며 시편의 표면과 바닥의 백월에코(back-wall echo)를 결정한다. 이를 통해 C-scan 영상을 생성한다. 검출된 피크의 평균과 분산을 이용해 임계값을 정하고 그 값으로 결함여부를 판단한다. 결함의 종류를 구분하기 위해서는 주성분 분석(PCA; principal component analysis)와 이차 판별 분석(QDA; quadratic discriminant analysis)를 수행하였다. PCA를 통한 512개의 차원은 주성분으로 변환 시 30개의 주성분에 99% 이상의 분산이 포함되었다. 주성분 개수를 한정시킴으로써 차원 축소를 통해 계산량을 크게 줄였고 오분류를 최소화하였다. 이차 판별 분석을 적용해 결정경계(decision boundary)의 방정식을 얻었고 이를 통해 결함을 분류할 수 있음을 실험을 통해 보였다.

Failure estimation of the composite laminates using machine learning techniques

  • Serban, Alexandru
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.663-670
    • /
    • 2017
  • The problem of layup optimization of the composite laminates involves a very complex multidimensional solution space which is usually non-exhaustively explored using different heuristic computational methods such as genetic algorithms (GA). To ensure the convergence to the global optimum of the applied heuristic during the optimization process it is necessary to evaluate a lot of layup configurations. As a consequence the analysis of an individual layup configuration should be fast enough to maintain the convergence time range to an acceptable level. On the other hand the mechanical behavior analysis of composite laminates for any geometry and boundary condition is very convoluted and is performed by computational expensive numerical tools such as finite element analysis (FEA). In this respect some studies propose very fast FEA models used in layup optimization. However, the lower bound of the execution time of FEA models is determined by the global linear system solving which in some complex applications can be unacceptable. Moreover, in some situation it may be highly preferred to decrease the optimization time with the cost of a small reduction in the analysis accuracy. In this paper we explore some machine learning techniques in order to estimate the failure of a layup configuration. The estimated response can be qualitative (the configuration fails or not) or quantitative (the value of the failure factor). The procedure consists of generating a population of random observations (configurations) spread across solution space and evaluating using a FEA model. The machine learning method is then trained using this population and the trained model is then used to estimate failure in the optimization process. The results obtained are very promising as illustrated with an example where the misclassification rate of the qualitative response is smaller than 2%.

A Single-Center Experience of Endoscopic Resection for Early Gastric Cancer with Lymphoid Stroma

  • Lim, Hyun;Lee, Jeong Hoon;Park, Young Soo;Na, Hee Kyong;Ahn, Ji Yong;Kim, Do Hoon;Choi, Kee Don;Song, Ho June;Lee, Gin Hyug;Jung, Hwoon-Yong
    • Journal of Gastric Cancer
    • /
    • 제18권4호
    • /
    • pp.400-408
    • /
    • 2018
  • Purpose: This study aimed to evaluate immediate outcomes and clinical courses of patients with early gastric carcinoma with lymphoid stroma (GCLS) who underwent endoscopic resection. Materials and Methods: We retrospectively reviewed the medical records of 40 patients (mean age, 56.9 years; 90.0% male) who underwent endoscopic resection and were pathologically diagnosed with GCLS confined to the mucosa or to the submucosa between March 1998 and December 2017. Results: Forty GCLS lesions in 40 patients were treated using endoscopic resection. Only 4 (10%) patients received diagnosis of GCLS before endoscopic resection. Fourteen (35.0%) lesions were intramucosal cancers and 26 (65.0%) exhibited submucosal invasion. En bloc resection (97.5%) was achieved for all lesions except one, with no significant complications. The complete resection rate was 85.0% (34 of 40 lesions). After endoscopic resection, 17 patients were referred for surgery and underwent gastrectomy with lymph node (LN) dissection because of deep submucosal invasion (n=16) and misclassification as undifferentiated cancer (n=1). No LN metastasis was determined in the specimens obtained during surgery. During a mean follow-up period of 49.7 months for 23 patients without surgical treatment, no regional LN enlargements, distant metastases, or gastric cancer-related deaths were found, although 1 metachronous lesion (undifferentiated adenocarcinoma, follow-up duration: 7 months) was observed. Conclusions: In patients with early GCLS, endoscopic resection is technically feasible and has favorable clinical outcomes. Therefore, endoscopic resection might represent an alternative treatment modality in patients with early GCLS with a low likelihood of LN metastasis.

에어비앤비(Airbnb) 웹 로그 데이터를 이용한 고객 행동 예측 (Consumer behavior prediction using Airbnb web log data)

  • 안효인;최유리;오래은;송종우
    • 응용통계연구
    • /
    • 제32권3호
    • /
    • pp.391-404
    • /
    • 2019
  • 그동안의 고객 행동에 대한 예측은 주로 고객이 가지는 고정적인 특성을 이용해왔다. 최근에는 점차 고객들의 활동이 오프라인에서 온라인으로 이동하면서 각 고객의 웹 로그를 추적하는 일이 가능해졌다. 그러나 방대한 양의 웹 로그 데이터를 수집할 수 있게 된 반면, 이에 대한 연구는 로그 데이터를 정리하거나 기술적인 특성만을 설명하는 것에 그쳤다. 본 연구에서는 웹사이트 Kaggle에서 제공하는 Airbnb 고객들의 성별, 연령 등의 기본 정보 및 웹 로그가 포함된 데이터셋을 이용하여 첫 숙소 예약까지 걸리는 개인의 의사 결정 시간을 예측하였다. Lasso, SVM, Random Forest, XGBoost 등 다양한 방법론을 활용하여 최적의 모형을 찾고, 웹 로그 데이터의 유무에 따른 예측 오차를 비교하여 웹 로그의 효용성을 확인하였다. 결과적으로 오분류율이 약 20%로 낮은 랜덤 포레스트 분류모형을 최적모형으로 선택하였다. 또한, 웹 로그 데이터를 이용하여 고객 개개인의 행동을 예측한 결과 사용하지 않은 경우와 비교해 예측의 정확도가 최대 두 배 더 높아진 것을 확인할 수 있었다.

AI를 이용한 지반정보 품질관리 방안에 관한 연구 (A Study on the Quality Control Method for Geotechnical Information Using AI)

  • 박가현;김종관;이석형;김민기;이경륜;한진태
    • 한국지반공학회논문집
    • /
    • 제38권11호
    • /
    • pp.87-95
    • /
    • 2022
  • 국토지반정보 포털시스템이 구축된 지반정보는 최근 설계, 시공, 지하안전관리, 재해재난 평가 등 다양한 분야에서 활용되고 있다. 그러나 전국적으로 기 구축된 약 30여만공의 지반정보는 누락되거나 잘못된 정보를 다수 포함하고 있어 데이터 활용시 신뢰도를 확보하기가 어렵다. 따라서 분석 데이터의 신뢰도를 확보하기 위해서는 지반정보를 활용하기 전 단계에서 지반정보의 정제(품질관리)가 반드시 필요하다. 본 연구에서는 딥러닝 기법 중 하나인 인공신경망 기법을 활용하여 지반정보를 자동으로 품질관리 하는 방안에 대하여 제안하였다. 특히, 가장 일반적으로 사용되는 정보인 표준관입시험 결과와 지층정보를 이용하여 지반정보의 이상치를 탐지하였다. 서울시 지반정보 데이터를 이용하여 분석하였으며, 검증데이터에 대한 오분류 비율은 5.4%로 확인되었다. 신경망 모델에서 이상치 분류된 데이터만을 추후에 검사함으로써 효율적으로 이상치를 탐지할 수 있을 것으로 기대된다.

기업 인적자원 관련 변수를 이용한 기업 신용점수 모형 구축에 관한 연구 (A Study for Building Credit Scoring Model using Enterprise Human Resource Factors)

  • 이영섭;박주완
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.423-440
    • /
    • 2007
  • 본 논문의 목적은 기업 신용점수에 영향을 미치는 기업 인적자원 요소들을 찾아서 기업 신용점수 모형을 구축하는 것이다. 모형 구축을 위해 사용된 자료는 2005년 한국직업능력개발원의 인적자본 기업패널 (Human Capital Corporate Panel, HCCP) 설문조사 자료와 한국신용평가(주)의 KIS-신용평점모델에서 생성된 기업 신용점수이다. 모형 구축을 위한 독립변수는 McLagan (1989)의 '인적자원 바퀴모델'을 토대로 인적자본 기업패널 설문조사 문항을 선택하여 사용하였으며, 종속변수로는 기업 신용평가점수를 사용하였다. 또한 기업 인적자원 관련 변수를 이용한 기업 신용점수 모형 구축을 위해 로지스틱 회귀모형을 사용하였다. 모형 구축 결과 최종적으로 선택된 변수는 22개였다 영역별로 세분화해서 살펴보면 대분류 기준으로 HRD 영역은 6개, HRM 영역은 15개, 기타 1개이고, 중분류 기준으로 개인개발 2개, 경력개발 2개, 조직개발 2개, 조직직무설계 1개, 인적자원계획 4개, 정보체계 2개, 보상 및 장려 6개, 복지후생 1개, 노사관계 1개, 기업규모 1개가 선택되었다. 구축된 모형을 평가하기 위하여 10등급 교차타당성 분석을 통한 오분류율, G-mean은 각각 30.81, 68.27이었다. 그리고 반응율은 가장 좋은 십분위가 가장 나쁜 십분위보다 약 6.08배가 크고 점차 감소하는 경향을 보이고 있다. 그러므로 구축된 모형은 기업 인적자원 관련 변수를 이용해 기업 신용점수를 측정하는데 적당한 모형이라는 결론을 내릴 수 있다

미세먼지가 울산지역 초등학생의 폐기능에 미치는 영향 (Effects of Fine Particles on Pulmonary Function of Elementary School Children in Ulsan)

  • 유승도;차정훈;김대선;이종태
    • 한국환경보건학회지
    • /
    • 제33권5호
    • /
    • pp.365-371
    • /
    • 2007
  • To evaluate the effect of air pollution on respiratory health in children, We conducted a longitudinal study in which children were asked to record their daily levels of Peak Expiratory Flow Rate(PEFR) using potable peak flow meter(mini-Wright) for 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in year, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of $PM_{10}$ and $PM_{2.5}$ over the study period were $64.9{\mu}g/m^3$ and $46.1{\mu}g/m^3$, respectively. The range of daily measured PEFR in this study was $182{\sim}481\;l/min$. Daily mean PEFR was regressed with the 24-hour average $PM_{10}(or\;PM_{2.5})$ levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of $PM_{10}$ or $PM_{2.5}$ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min(95% CI -1.8, 0.1) decline in PEFR. Even though this study showed negative findings on the relationship between respiratory function and air particles, it was worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely resulted in misclassification of true exposure levels and this was the first Korean study that $PM_{2.5}$ measurement was applied as an index of air quality.

주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘 (EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control)

  • 이기배;이종현;배진호;이재일
    • 전자공학회논문지
    • /
    • 제52권8호
    • /
    • pp.117-125
    • /
    • 2015
  • 본 논문은 '좌', '우' 방향 제어를 위해 취득된 EEG(Electroencephalogram) 신호 기반 분류 알고리즘과 EEG 센서, Labview, DAQ, Matlab, 주행로봇으로 구성된 방향 제어 시스템을 제안한다. 제안된 알고리즘은 DWT(Discrete Wavelet Transform)로 추출된 주파수대역 정보를 특징으로 이용하며, Fishers score를 이용하여 변별력이 높은 주파수 대역의 특징을 선별한다. 또한, SVM (Support Vector Machine)을 이용하여 분류 성능이 최고가 되는 특징벡터의 조합을 제안하고, 잘못된 판정에 의한 오동작을 방지하기 위한 MLD(Maximum Likelihood Decision) 기반의 판정보류 알고리즘도 제안한다. 제안된 알고리즘에 의해 선택된 4개의 특징벡터는 국제 표준 전극 배치법에 따른 P8 채널의 d2(16-32Hz), d5(2-4Hz) 주파수 대역의 전압의 절대 값 평균과 표준편차이다. SVM 분류기로 실험한 결과 98.75%의 정확도와 1.25%의 오류율 성능을 보였다. 또한, 오류 확률 70%를 판정 보류로 규정할 경우, 제안된 알고리즘은 인식률 95.63%의 정확도와 오류율 0%을 보였다.