한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
/
pp.183-186
/
2003
To evaluate the effect of air pollution on respiratory health in children, we conducted a longitudinal study in which children were asked to record their daily levels of peak expiratory flow rate using potable peak flow meter (mini-Wright) far 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in you, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of PM$\_$10/ and PM$\_$2.5/ over the study period were 64.9$\mu\textrm{g}$/㎥ and 46. l$\mu\textrm{g}$/㎥, respectively. The range of daily measured PEFR in this study was 170-481 l/min. Daily mean PEFR was regressed with the 24-hour. average PM$\_$10/ (or PM$\_$2.5/) levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of PM$\_$10/ or PM$\_$2.5/ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min (95% Cl -1.8, 0.1) decline in PEFR. Even though this study shows negative findings on the relationship between respiratory function and air particles, it is worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely results in misclassification of true exposure levels and this is the first Korean study that PM$\_$2.5/ measurement is applied as an index of air particle quality.
주어진 응용에 적합한 MLP 분류기의 위상 구조를 효율적으로 학습하기 위하여 종족 유전 알고리즘 (SGA)과 파라미터 프리 유전 알고리즘(PfGA)을 결합한 파라미터 프리 종족 유전 알고리즘(PfSGA)을 제안한다. SGA는 전체 탐색 공간을 은닉층 뉴런의 수에 따라 여러 개의 영역(종족)으로 분할한 후, 학습 과정 중 기준에 미달되는 종족에 대해서는 학습을 중단시킴으로써 불필요한 탐색을 줄이는 학습법이다. 그러나 SGA는 돌연변이나 교배 확률 등 학습 파라미터 설정에 따라 분류기의 성능이 달라진다. 따라서 이 논문에서는 SGA와 PfGA를 결합하여 파라미터 설정에 무관하도록 하였다. 벤치마크 데이터와 수화 단어에 대하여 실험한 결과 PfSGA는 기존의 SGA에 비해 학습 시간을 단축시킬 수 있으며, 파라미터의 설정에 영향을 받지 않았다. 또한 기존의 방법에 비해 오인식율과 위상 구조 등에 있어서 효율적임을 확인하였다.
본 논문에서는 항공기 복합재료 내부의 결함을 자동으로 검출하고 분류하는 초음파 검사 방식을 제안한다. 결함 검출을 위해서 초음파의 국부 최대값을 이용해 피크(peak) 값을 추출해낸다. 피크의 거리정보를 이용해 히스토그램화 하며 시편의 표면과 바닥의 백월에코(back-wall echo)를 결정한다. 이를 통해 C-scan 영상을 생성한다. 검출된 피크의 평균과 분산을 이용해 임계값을 정하고 그 값으로 결함여부를 판단한다. 결함의 종류를 구분하기 위해서는 주성분 분석(PCA; principal component analysis)와 이차 판별 분석(QDA; quadratic discriminant analysis)를 수행하였다. PCA를 통한 512개의 차원은 주성분으로 변환 시 30개의 주성분에 99% 이상의 분산이 포함되었다. 주성분 개수를 한정시킴으로써 차원 축소를 통해 계산량을 크게 줄였고 오분류를 최소화하였다. 이차 판별 분석을 적용해 결정경계(decision boundary)의 방정식을 얻었고 이를 통해 결함을 분류할 수 있음을 실험을 통해 보였다.
The problem of layup optimization of the composite laminates involves a very complex multidimensional solution space which is usually non-exhaustively explored using different heuristic computational methods such as genetic algorithms (GA). To ensure the convergence to the global optimum of the applied heuristic during the optimization process it is necessary to evaluate a lot of layup configurations. As a consequence the analysis of an individual layup configuration should be fast enough to maintain the convergence time range to an acceptable level. On the other hand the mechanical behavior analysis of composite laminates for any geometry and boundary condition is very convoluted and is performed by computational expensive numerical tools such as finite element analysis (FEA). In this respect some studies propose very fast FEA models used in layup optimization. However, the lower bound of the execution time of FEA models is determined by the global linear system solving which in some complex applications can be unacceptable. Moreover, in some situation it may be highly preferred to decrease the optimization time with the cost of a small reduction in the analysis accuracy. In this paper we explore some machine learning techniques in order to estimate the failure of a layup configuration. The estimated response can be qualitative (the configuration fails or not) or quantitative (the value of the failure factor). The procedure consists of generating a population of random observations (configurations) spread across solution space and evaluating using a FEA model. The machine learning method is then trained using this population and the trained model is then used to estimate failure in the optimization process. The results obtained are very promising as illustrated with an example where the misclassification rate of the qualitative response is smaller than 2%.
Lim, Hyun;Lee, Jeong Hoon;Park, Young Soo;Na, Hee Kyong;Ahn, Ji Yong;Kim, Do Hoon;Choi, Kee Don;Song, Ho June;Lee, Gin Hyug;Jung, Hwoon-Yong
Journal of Gastric Cancer
/
제18권4호
/
pp.400-408
/
2018
Purpose: This study aimed to evaluate immediate outcomes and clinical courses of patients with early gastric carcinoma with lymphoid stroma (GCLS) who underwent endoscopic resection. Materials and Methods: We retrospectively reviewed the medical records of 40 patients (mean age, 56.9 years; 90.0% male) who underwent endoscopic resection and were pathologically diagnosed with GCLS confined to the mucosa or to the submucosa between March 1998 and December 2017. Results: Forty GCLS lesions in 40 patients were treated using endoscopic resection. Only 4 (10%) patients received diagnosis of GCLS before endoscopic resection. Fourteen (35.0%) lesions were intramucosal cancers and 26 (65.0%) exhibited submucosal invasion. En bloc resection (97.5%) was achieved for all lesions except one, with no significant complications. The complete resection rate was 85.0% (34 of 40 lesions). After endoscopic resection, 17 patients were referred for surgery and underwent gastrectomy with lymph node (LN) dissection because of deep submucosal invasion (n=16) and misclassification as undifferentiated cancer (n=1). No LN metastasis was determined in the specimens obtained during surgery. During a mean follow-up period of 49.7 months for 23 patients without surgical treatment, no regional LN enlargements, distant metastases, or gastric cancer-related deaths were found, although 1 metachronous lesion (undifferentiated adenocarcinoma, follow-up duration: 7 months) was observed. Conclusions: In patients with early GCLS, endoscopic resection is technically feasible and has favorable clinical outcomes. Therefore, endoscopic resection might represent an alternative treatment modality in patients with early GCLS with a low likelihood of LN metastasis.
그동안의 고객 행동에 대한 예측은 주로 고객이 가지는 고정적인 특성을 이용해왔다. 최근에는 점차 고객들의 활동이 오프라인에서 온라인으로 이동하면서 각 고객의 웹 로그를 추적하는 일이 가능해졌다. 그러나 방대한 양의 웹 로그 데이터를 수집할 수 있게 된 반면, 이에 대한 연구는 로그 데이터를 정리하거나 기술적인 특성만을 설명하는 것에 그쳤다. 본 연구에서는 웹사이트 Kaggle에서 제공하는 Airbnb 고객들의 성별, 연령 등의 기본 정보 및 웹 로그가 포함된 데이터셋을 이용하여 첫 숙소 예약까지 걸리는 개인의 의사 결정 시간을 예측하였다. Lasso, SVM, Random Forest, XGBoost 등 다양한 방법론을 활용하여 최적의 모형을 찾고, 웹 로그 데이터의 유무에 따른 예측 오차를 비교하여 웹 로그의 효용성을 확인하였다. 결과적으로 오분류율이 약 20%로 낮은 랜덤 포레스트 분류모형을 최적모형으로 선택하였다. 또한, 웹 로그 데이터를 이용하여 고객 개개인의 행동을 예측한 결과 사용하지 않은 경우와 비교해 예측의 정확도가 최대 두 배 더 높아진 것을 확인할 수 있었다.
국토지반정보 포털시스템이 구축된 지반정보는 최근 설계, 시공, 지하안전관리, 재해재난 평가 등 다양한 분야에서 활용되고 있다. 그러나 전국적으로 기 구축된 약 30여만공의 지반정보는 누락되거나 잘못된 정보를 다수 포함하고 있어 데이터 활용시 신뢰도를 확보하기가 어렵다. 따라서 분석 데이터의 신뢰도를 확보하기 위해서는 지반정보를 활용하기 전 단계에서 지반정보의 정제(품질관리)가 반드시 필요하다. 본 연구에서는 딥러닝 기법 중 하나인 인공신경망 기법을 활용하여 지반정보를 자동으로 품질관리 하는 방안에 대하여 제안하였다. 특히, 가장 일반적으로 사용되는 정보인 표준관입시험 결과와 지층정보를 이용하여 지반정보의 이상치를 탐지하였다. 서울시 지반정보 데이터를 이용하여 분석하였으며, 검증데이터에 대한 오분류 비율은 5.4%로 확인되었다. 신경망 모델에서 이상치 분류된 데이터만을 추후에 검사함으로써 효율적으로 이상치를 탐지할 수 있을 것으로 기대된다.
본 논문의 목적은 기업 신용점수에 영향을 미치는 기업 인적자원 요소들을 찾아서 기업 신용점수 모형을 구축하는 것이다. 모형 구축을 위해 사용된 자료는 2005년 한국직업능력개발원의 인적자본 기업패널 (Human Capital Corporate Panel, HCCP) 설문조사 자료와 한국신용평가(주)의 KIS-신용평점모델에서 생성된 기업 신용점수이다. 모형 구축을 위한 독립변수는 McLagan (1989)의 '인적자원 바퀴모델'을 토대로 인적자본 기업패널 설문조사 문항을 선택하여 사용하였으며, 종속변수로는 기업 신용평가점수를 사용하였다. 또한 기업 인적자원 관련 변수를 이용한 기업 신용점수 모형 구축을 위해 로지스틱 회귀모형을 사용하였다. 모형 구축 결과 최종적으로 선택된 변수는 22개였다 영역별로 세분화해서 살펴보면 대분류 기준으로 HRD 영역은 6개, HRM 영역은 15개, 기타 1개이고, 중분류 기준으로 개인개발 2개, 경력개발 2개, 조직개발 2개, 조직직무설계 1개, 인적자원계획 4개, 정보체계 2개, 보상 및 장려 6개, 복지후생 1개, 노사관계 1개, 기업규모 1개가 선택되었다. 구축된 모형을 평가하기 위하여 10등급 교차타당성 분석을 통한 오분류율, G-mean은 각각 30.81, 68.27이었다. 그리고 반응율은 가장 좋은 십분위가 가장 나쁜 십분위보다 약 6.08배가 크고 점차 감소하는 경향을 보이고 있다. 그러므로 구축된 모형은 기업 인적자원 관련 변수를 이용해 기업 신용점수를 측정하는데 적당한 모형이라는 결론을 내릴 수 있다
To evaluate the effect of air pollution on respiratory health in children, We conducted a longitudinal study in which children were asked to record their daily levels of Peak Expiratory Flow Rate(PEFR) using potable peak flow meter(mini-Wright) for 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in year, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of $PM_{10}$ and $PM_{2.5}$ over the study period were $64.9{\mu}g/m^3$ and $46.1{\mu}g/m^3$, respectively. The range of daily measured PEFR in this study was $182{\sim}481\;l/min$. Daily mean PEFR was regressed with the 24-hour average $PM_{10}(or\;PM_{2.5})$ levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of $PM_{10}$ or $PM_{2.5}$ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min(95% CI -1.8, 0.1) decline in PEFR. Even though this study showed negative findings on the relationship between respiratory function and air particles, it was worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely resulted in misclassification of true exposure levels and this was the first Korean study that $PM_{2.5}$ measurement was applied as an index of air quality.
본 논문은 '좌', '우' 방향 제어를 위해 취득된 EEG(Electroencephalogram) 신호 기반 분류 알고리즘과 EEG 센서, Labview, DAQ, Matlab, 주행로봇으로 구성된 방향 제어 시스템을 제안한다. 제안된 알고리즘은 DWT(Discrete Wavelet Transform)로 추출된 주파수대역 정보를 특징으로 이용하며, Fishers score를 이용하여 변별력이 높은 주파수 대역의 특징을 선별한다. 또한, SVM (Support Vector Machine)을 이용하여 분류 성능이 최고가 되는 특징벡터의 조합을 제안하고, 잘못된 판정에 의한 오동작을 방지하기 위한 MLD(Maximum Likelihood Decision) 기반의 판정보류 알고리즘도 제안한다. 제안된 알고리즘에 의해 선택된 4개의 특징벡터는 국제 표준 전극 배치법에 따른 P8 채널의 d2(16-32Hz), d5(2-4Hz) 주파수 대역의 전압의 절대 값 평균과 표준편차이다. SVM 분류기로 실험한 결과 98.75%의 정확도와 1.25%의 오류율 성능을 보였다. 또한, 오류 확률 70%를 판정 보류로 규정할 경우, 제안된 알고리즘은 인식률 95.63%의 정확도와 오류율 0%을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.