• 제목/요약/키워드: Misclassification Rate

검색결과 68건 처리시간 0.018초

단층 신경망과 이중 기각 방법을 이용한 문자인식 (Single-Layer Neural Networks with Double Rejection Mechanisms for Character Recognition)

  • 임준호;채수익
    • 전자공학회논문지B
    • /
    • 제32B권3호
    • /
    • pp.522-532
    • /
    • 1995
  • Multilayer neural networks with backpropagation learning algorithm are widely used for pattern classification problems. For many real applications, it is more important to reduce the misclassification rate than to increase the rate of successful classification. But multilayer perceptrons(MLP's) have drawbacks of slow learning speed and false convergence to local minima. In this paper, we propose a new method for character recognition problems with a single-layer network and double rejection mechanisms, which guarantees a very low misclassification rate. Comparing to the MLP's, it yields fast learning and requires a simple hardware architecture. We also introduce a new coding scheme to reduce the misclassification rate. We have prepared two databases: one with 135,000 digit patterns and the other with 117,000 letter patterns, and have applied the proposed method for printed character recognition, which shows that the method reduces the misclassification rate significantly without sacrificing the correct recognition rate.

  • PDF

Evaluating Predictive Ability of Classification Models with Ordered Multiple Categories

  • Oong-Hyun Sung
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.383-395
    • /
    • 1999
  • This study is concerned with the evaluation of predictive ability of classification models with ordered multiple categories. If categories can be ordered or ranked the spread of misclassification should be considered to evaluate the performance of the classification models using loss rate since the apparent error rate can not measure the spread of misclassification. Since loss rate is known to underestimate the true loss rate the bootstrap method were used to estimate the true loss rate. thus this study suggests the method to evaluate the predictive power of the classification models using loss rate and the bootstrap estimate of the true loss rate.

  • PDF

Estimating Prediction Errors in Binary Classification Problem: Cross-Validation versus Bootstrap

  • Kim Ji-Hyun;Cha Eun-Song
    • Communications for Statistical Applications and Methods
    • /
    • 제13권1호
    • /
    • pp.151-165
    • /
    • 2006
  • It is important to estimate the true misclassification rate of a given classifier when an independent set of test data is not available. Cross-validation and bootstrap are two possible approaches in this case. In related literature bootstrap estimators of the true misclassification rate were asserted to have better performance for small samples than cross-validation estimators. We compare the two estimators empirically when the classification rule is so adaptive to training data that its apparent misclassification rate is close to zero. We confirm that bootstrap estimators have better performance for small samples because of small variance, and we have found a new fact that their bias tends to be significant even for moderate to large samples, in which case cross-validation estimators have better performance with less computation.

Analyzing Customer Management Data by Data Mining: Case Study on Chum Prediction Models for Insurance Company in Korea

  • Cho, Mee-Hye;Park, Eun-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1007-1018
    • /
    • 2008
  • The purpose of this case study is to demonstrate database-marketing management. First, we explore original variables for insurance customer's data, modify them if necessary, and go through variable selection process before analysis. Then, we develop churn prediction models using logistic regression, neural network and SVM analysis. We also compare these three data mining models in terms of misclassification rate.

  • PDF

불균형 자료에 대한 분류분석 (Classification Analysis for Unbalanced Data)

  • 김동아;강수연;송종우
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.495-509
    • /
    • 2015
  • 일반적인 2집단 분류(2-class classification)의 경우, 두 집단의 비율이 크게 차이나지 않는 경우가 많다. 본 논문에서는 두 집단의 비율이 크게 차이나는 불균형 데이터(unbalanced data)의 분류 문제에 대해서 다루고자 한다. 불균형 데이터의 분류방법은 균형이 맞는 데이터(balanced data)의 경우보다 분류하기 어려운 경우가 많다. 이런 자료에서 보통의 분류모형을 적용하게 되면 많은 경우에 대부분의 관측치가 큰 집단으로 분류 되는 경우가 많은데 실질적인 어플리케이션에서는 이런 오분류가 손해가 더 큰 경우가 대부분이다. 우리는 sampling 기법을 이용하여 다양한 분류 방법론의 성능을 비교 분석 하였다. 또한 비대칭 손실(asymmetric loss)을 가정한 경우에 어떤 방법론이 가장 작은 loss를 생성하는 지를 비교하였다. 성능 비교를 위해서는 오분류율(misclassification rate), G-mean, ROC, 그리고 AUC(Area under the curve) 등을 이용하였다.

신용평가에서 로지스틱 회귀를 이용한 미결정자 추론 (Undecided inference using logistic regression for credit evaluation)

  • 홍종선;정민섭
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권2호
    • /
    • pp.149-157
    • /
    • 2011
  • 본 연구는 신용평가 과정에서 발생하는 미결정자를 결측자료 문제로 간주하여 MAR와 MNAR 가정 하에서 추론한다. MAR 가정에서 미결정자 추론은 결정자들에 대한 로지스틱 회귀모형의 회귀 계수벡터를 이용하여 미결정자의 부도 확률을 구한 후 결정자의 부도확률과 비교하여 미결정자의 미래 상태를 판단한다. 그리고 MNAR 가정에서의 미결정자 추론은 특성변수가 추가한 로지스틱 모형으로부터 미결정자의 부도확률을 구하고 미결정자를 예측하는 방법을 제안하였다. 두 종류의 실제 자료에 대하여 모의실험을 한 결과, MAR 가정에서 미결정자의 비율이 증가하더라도 원자료의 오분류율과 추론한 결과 차이가 없으며, MNAR 가정에서는 추가적인 변수를 고려하여 미결정자를 추정하였기 때문에 미결정자의 오분류율이 MAR 가정에서의 오분류율보다 감소하고 나아가 전체에서 미결정자가 차지하는 비율이 증가함에 따라 전체의 오분류율이 더욱 감소함을 발견하였다.

Bivariate ROC Curve and Optimal Classification Function

  • Hong, C.S.;Jeong, J.A.
    • Communications for Statistical Applications and Methods
    • /
    • 제19권4호
    • /
    • pp.629-638
    • /
    • 2012
  • We propose some methods to obtain optimal thresholds and classification functions by using various cutoff criterion based on the bivariate ROC curve that represents bivariate cumulative distribution functions. The false positive rate and false negative rate are calculated with these classification functions for bivariate normal distributions.

Analyzing the Effect of Lexical and Conceptual Information in Spam-mail Filtering System

  • Kang Sin-Jae;Kim Jong-Wan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.105-109
    • /
    • 2006
  • In this paper, we constructed a two-phase spam-mail filtering system based on the lexical and conceptual information. There are two kinds of information that can distinguish the spam mail from the ham (non-spam) mail. The definite information is the mail sender's information, URL, a certain spam keyword list, and the less definite information is the word list and concept codes extracted from the mail body. We first classified the spam mail by using the definite information, and then used the less definite information. We used the lexical information and concept codes contained in the email body for SVM learning in the 2nd phase. According to our results the ham misclassification rate was reduced if more lexical information was used as features, and the spam misclassification rate was reduced when the concept codes were included in features as well.

Comparison of Multiway Discretization Algorithms for Data Mining

  • Kim, Jeong-Suk;Jang, Young-Mi;Na, Jong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.801-813
    • /
    • 2005
  • The discretization algorithms for continuous data have been actively studied in the area of data mining. These discretizations are very important in data analysis, especially for efficient model selection in data mining. So, in this paper, we introduce the principles of some mutiway discretization algorithms including KEX, 1R and CN4 algorithm and investigate the efficiency of these algorithms through numerical study. For various underlying distribution, we compare these algorithms in view of misclassification rate.

  • PDF

Comparison of Binary Discretization Algorithms for Data Mining

  • Na, Jong-Hwa;Kim, Jeong-Mi;Cho, Wan-Sup
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.769-780
    • /
    • 2005
  • Recently, the discretization algorithms for continuous data have been actively studied. But there are few articles to compare the efficiency of these algorithms. In this paper we introduce the principles of some binary discretization algorithms including C4.5, CART and QUEST and investigate the efficiency of these algorithms through numerical study. For various underlying distribution, we compare these algorithms in view of misclassification rate and MSE. Real data examples are also included.

  • PDF