• Title/Summary/Keyword: Misbehavior Node

Search Result 10, Processing Time 0.025 seconds

A Novel Trust Establishment Method for Wireless Sensor Networks

  • Ishmanov, Farruh;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1529-1547
    • /
    • 2015
  • Establishment of trust is important in wireless sensor networks for security enhancement and successful collaboration. Basically, a node establishes trust with other nodes by estimating a trust value based on monitored behavior of the other nodes. Since a malicious/misbehaving node might launch different attack strategies and might demonstrate random misbehavior, a trust estimation method should be robust against such attacks and misbehavior. Otherwise, the operation of trust establishment will be meaningless, and performance of an application that runs on top of trust establishment will degrade. In this paper, we propose a robust and novel trust estimation method. Unlike traditional trust estimation methods, we consider not only the weight of misbehavior but also the frequency of misbehavior. The frequency-of-misbehavior component explicitly demonstrates how frequently a node misbehaves during a certain observed time period, and it tracks the behavior of nodes more efficiently, which is a main factor in deriving an accurate trust value. In addition, the weight of misbehavior is comprehensively measured to mitigate the effect of an on-off attack. Frequency and weight of misbehavior are comprehensively combined to obtain the trust value. Evaluation results show that the proposed method outperforms other trust estimation methods under different attacks and types of misbehavior.

Partially Distributed Dynamic Model for Secure and Reliable Routing in Mobile Ad hoc Networks

  • Anand, Anjali;Aggarwal, Himanshu;Rani, Rinkle
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.938-947
    • /
    • 2016
  • A mobile ad hoc network (MANET) is a collection of mobile nodes communicating in an infrastructure-less environment without the aid of a central administrating authority. Such networks entail greater dependency on synergy amongst the nodes to execute fundamental network operations. The scarcity of resources makes it economically logical for nodes to misbehave to preserve their resources which makes secure routing difficult to achieve. To ensure secure routing a mechanism is required to discourage misbehavior and maintain the synergy in the network. The proposed scheme employs a partially distributed dynamic model at each node for enhancing the security of the network. Supplementary information regarding misbehavior in the network is partially distributed among the nodes during route establishment which is used as a cautionary measure to ensure secure routing. The proposed scheme contemplates the real world scenario where a node may exhibit different kinds of misbehavior at different times. Thus, it provides a dynamic decision making procedure to deal with nodes exhibiting varying misbehaviors in accordance to their severity. Simulations conducted to evaluate the performance of the model demonstrate its effectiveness in dealing with misbehaving nodes.

Behavior based Routing Misbehavior Detection in Wireless Sensor Networks

  • Terence, Sebastian;Purushothaman, Geethanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5354-5369
    • /
    • 2019
  • Sensor networks are deployed in unheeded environment to monitor the situation. In view of the unheeded environment and by the nature of their communication channel sensor nodes are vulnerable to various attacks most commonly malicious packet dropping attacks namely blackhole, grayhole attack and sinkhole attack. In each of these attacks, the attackers capture the sensor nodes to inject fake details, to deceive other sensor nodes and to interrupt the network traffic by packet dropping. In all such attacks, the compromised node advertises itself with fake routing facts to draw its neighbor traffic and to plunge the data packets. False routing advertisement play vital role in deceiving genuine node in network. In this paper, behavior based routing misbehavior detection (BRMD) is designed in wireless sensor networks to detect false advertiser node in the network. Herein the sensor nodes are monitored by its neighbor. The node which attracts more neighbor traffic by fake routing advertisement and involves the malicious activities such as packet dropping, selective packet dropping and tampering data are detected by its various behaviors and isolated from the network. To estimate the effectiveness of the proposed technique, Network Simulator 2.34 is used. In addition packet delivery ratio, throughput and end-to-end delay of BRMD are compared with other existing routing protocols and as a consequence it is shown that BRMD performs better. The outcome also demonstrates that BRMD yields lesser false positive (less than 6%) and false negative (less than 4%) encountered in various attack detection.

SEC Approach for Detecting Node Replication Attacks in Static Wireless Sensor Networks

  • Sujihelen, L.;Jayakumar, C.;Senthilsingh, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2447-2455
    • /
    • 2018
  • Security is more important in many sensor applications. The node replication attack is a major issue on sensor networks. The replicated node can capture all node details. Node Replication attacks use its secret cryptographic key to successfully produce the networks with clone nodes and also it creates duplicate nodes to build up various attacks. The replication attacks will affect in routing, more energy consumption, packet loss, misbehavior detection, etc. In this paper, a Secure-Efficient Centralized approach is proposed for detecting a Node Replication Attacks in Wireless Sensor Networks for Static Networks. The proposed system easily detects the replication attacks in an effective manner. In this approach Secure Cluster Election is used to prevent from node replication attack and Secure Efficient Centralized Approach is used to detect if any replicated node present in the network. When comparing with the existing approach the detection ratio, energy consumption performs better.

An Efficient Detection and Management Technique of Misbehavior nodes in Ad-hoc Networks (Ad-hoc 네트워크에서의 효율적인 비정상행위 노드 탐지 및 관리 기법)

  • Lee, Yun-Ho;Lee, Soo-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.5
    • /
    • pp.71-80
    • /
    • 2009
  • Ad-hoc network consists f mobile nodes, which they are together in the communication. However, if some misbehaving nodes are in network, it is faced to many threats. Therefore, detection and management of misbehaving node are necessary to make confident in Ad-hoc networks. To solve this problem, we use Node Weight Management Server(NWMS), which it manage each node's weight in local area. When NWMS detect misbehaving node, it adds the node's weight and if the node's weight exceeds threshold then NWMS broadcasts the node's information to isolate in network. These mechanisms show that they are highly effective and can reliably detect a multitude of misbehaving node.

Enhanced ANTSEC Framework with Cluster based Cooperative Caching in Mobile Ad Hoc Networks

  • Umamaheswari, Subbian;Radhamani, Govindaraju
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • In a mobile ad hoc network (MANET), communication between mobile nodes occurs without centralized control. In this environment the mobility of a node is unpredictable; this is considered as a characteristic of wireless networks. Because of faulty or malicious nodes, the network is vulnerable to routing misbehavior. The resource constrained characteristics of MANETs leads to increased query delay at the time of data access. In this paper, AntHocNet+ Security (ANTSEC) framework is proposed that includes an enhanced cooperative caching scheme embedded with artificial immune system. This framework improves security by injecting immunity into the data packets, improves the packet delivery ratio and reduces end-to-end delay using cross layer design. The issues of node failure and node malfunction are addressed in the cache management.

A Study on Detecting Selfish Nodes in Wireless LAN using Tsallis-Entropy Analysis (뜨살리스-엔트로피 분석을 통한 무선 랜의 이기적인 노드 탐지 기법)

  • Ryu, Byoung-Hyun;Seok, Seung-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.12-21
    • /
    • 2012
  • IEEE 802.11 MAC protocol standard, DCF(CSMA/CA), is originally designed to ensure the fair channel access between mobile nodes sharing the local wireless channel. It has been, however, revealed that some misbehavior nodes transmit more data than other nodes through artificial means in hot spot area spreaded rapidly. The misbehavior nodes may modify the internal process of their MAC protocol or interrupt the MAC procedure of normal nodes to achieve more data transmission. This problem has been referred to as a selfish node problem and almost literatures has proposed methods of analyzing the MAC procedures of all mobile nodes to detect the selfish nodes. However, these kinds of protocol analysis methods is not effective at detecting all kinds of selfish nodes enough. This paper address this problem of detecting selfish node using Tsallis-Entropy which is a kind of statistical method. Tsallis-Entropy is a criteria which can show how much is the density or deviation of a probability distribution. The proposed algorithm which operates at a AP node of wireless LAN extracts the probability distribution of data interval time for each node, then compares the one with a threshold value to detect the selfish nodes. To evaluate the performance of proposed algorithm, simulation experiments are performed in various wireless LAN environments (congestion level, how selfish node behaviors, threshold level) using ns2. The simulation results show that the proposed algorithm achieves higher successful detection rate.

Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

  • Heydari, Vahid;Yoo, Seong-Moo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5150-5169
    • /
    • 2015
  • Mobile Ad hoc NETworks (MANETs) are the best choice when mobility, scalability, and decentralized network infrastructure are needed. Because of critical mission applications of MANETs, network security is the vital requirement. Most routing protocols in MANETs assume that every node in the network is trustworthy. However, due to the open medium, the wide distribution, and the lack of nodes' physical protection, attackers can easily compromise MANETs by inserting misbehaving nodes into the network that make blackhole attacks. Previous research to detect the misbehaving nodes in MANETs used the overhearing methods, or additional ACKnowledgement (ACK) packets to confirm the reception of data packets. In this paper a special lightweight acknowledgement-based method is developed that, contrary to existing methods, it uses ACK packets of MAC layer instead of adding new ACK packets to the network layer for confirmations. In fact, this novel method, named PIGACK, uses ACK packets of MAC 802.11 to piggyback confirmations from a receiver to a sender in the same transmission duration that the sender sends a data packet to the receiver. Analytical and simulation results show that the proposed method considerably decreases the network overhead and increases the packet delivery ratio compared to the well-known method (2ACK).

Security Design for Efficient Detection of Misbehavior Node in MANET (MANET에서 비정상 노드를 효율적으로 탐지하기 위한 보안 설계)

  • Hwang, Yoon-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.408-420
    • /
    • 2010
  • On a Mobile Ad hoc NETwork(MANET), it is difficult to detect and prevent misbehaviors nodes existing between end nodes, as communication between remote nodes is made through multiple hop routes due to lack of a fixed networked structure. Therefore, to maintain MANET's performance and security, a technique to identify misbehaving middle nodes and nodes that are compromise by such nodes is required. However, previously proposed techniques assumed that nodes comprising MANET are in a friendly and cooperative relationship, and suggested only methods to identify misbehaving nodes. When these methods are applied to a larger-scale MANET, large overhead is induced. As such, this paper suggests a system model called Secure Cluster-based MANET(SecCBM) to provide secure communication between components aperANET and to ensure eed. As such, this pand managems suapemisbehavior nodes. SecCBM consists apetwo stages. The first is the preventis pstage, whereemisbehavior nodes are identified when rANET is comprised by using a cluster-based hierarchical control structure through dynamic authentication. The second is the post-preventis pstage, whereemisbehavior nodes created during the course apecommunication amongst nodes comprising the network are dh, thed by using FC and MN tables. Through this, MANET's communication safety and efficiency were improved and the proposed method was confirmed to be suitable for MANET through simulation performance evaluation.

Inter-Process Correlation Model based Hybrid Framework for Fault Diagnosis in Wireless Sensor Networks

  • Zafar, Amna;Akbar, Ali Hammad;Akram, Beenish Ayesha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.536-564
    • /
    • 2019
  • Soft faults are inherent in wireless sensor networks (WSNs) due to external and internal errors. The failure of processes in a protocol stack are caused by errors on various layers. In this work, impact of errors and channel misbehavior on process execution is investigated to provide an error classification mechanism. Considering implementation of WSN protocol stack, inter-process correlations of stacked and peer layer processes are modeled. The proposed model is realized through local and global decision trees for fault diagnosis. A hybrid framework is proposed to implement local decision tree on sensor nodes and global decision tree on diagnostic cluster head. Local decision tree is employed to diagnose critical failures due to errors in stacked processes at node level. Global decision tree, diagnoses critical failures due to errors in peer layer processes at network level. The proposed model has been analyzed using fault tree analysis. The framework implementation has been done in Castalia. Simulation results validate the inter-process correlation model-based fault diagnosis. The hybrid framework distributes processing load on sensor nodes and diagnostic cluster head in a decentralized way, reducing communication overhead.