• 제목/요약/키워드: Mirror System

검색결과 836건 처리시간 0.032초

태양광선 제적추적기법을 이용한 Heliostat 구동축 기구오차에서 기인하는 태양추적오차의 분석 (Analysis of Sun Tracking Error Caused by the Heliostat Driving Axis Geometrical Error Utilizing the Solar Ray Tracing Technique)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제29권2호
    • /
    • pp.39-46
    • /
    • 2009
  • Heliostat, as a mirror system tracking the sun's movement, is the most important subsystem determining the efficiency of solar thermal power plant. Thus the accurate sun tracking performance under the various hazardous operating condition, is required. This study presents a methodology of development of the solar ray tracing technique and the application of it in the analysis of sun tracking error due to the heliostat geometrical errors. The geometrical errors considered here are the azimuth axis tilting error and the elevation axis tilting error. We first analyze the geometry of solar ray reflected from the heliostat. Then the point on the receiver, where the solar ray reflected from the heliostat is landed, is computed and compared with the original intended point, which represents the sun tracking error. The result obtained shows that the effect of geometrical error on the sun tracking performance is varying with time(season) and the heliostat location. It also shows that the heliostat located near the solar tower has larger sun tracking error than that of the heliostat located farther.

CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산 (Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle using CeO2/ZrO2 Foam Device)

  • 이진규;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.11-18
    • /
    • 2014
  • Two-step water splitting thermochemical cycle with $CeO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2$ foam device depending on reaction temperature of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. As a result, the amount of reduced $CeO_2$ considerably varies according to the reaction temperature of Thermal-Reduction step. and hydrogen production was not much when the amount of reduced $CeO_2$ decreased even if the reaction temperature of Water-Decomposition step was high. Therefore, it is very important to keep the reaction temperature of Thermal-Reduction step high in two-step thermochemical cycle with $CeO_2$.

All-fiber Tm-Ho Codoped Laser Operating at 1700 nm

  • Park, Jaedeok;Ryu, Siheon;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • 제2권4호
    • /
    • pp.356-360
    • /
    • 2018
  • We demonstrate continuous-wave operation of an all-fiber thulium-holmium codoped laser operating at a wavelength of 1706.3 nm. To realize laser operation in the short-wavelength region of the emission-band edge of thulium in silica fiber, we employ fiber Bragg gratings having resonant reflection at a wavelength around 1700 nm as a wavelength-selective mirror in an all-fiber cavity scheme. We first examine the performance of the laser by adjusting the central wavelength of the in-band pump source. Although a pump source possessing a longer wavelength is observed to provide reduced laser threshold power and increased slope efficiency, because of the characteristics of spectral response in the gain fiber, we find that the optimal pump wavelength is 1565 nm to obtain maximum laser output power for a given system. We further explore the properties of the laser by varying the fiber gain length from 1 m to 1.4 m, for the purpose of power scaling. It is revealed that the laser shows optimal performance in terms of output power and slope efficiency at a gain length of 1.3 m, where we obtain a maximum output power of 249 mW for an applied pump power of 2.1 W. A maximum slope efficiency is also estimated to be 23% under these conditions.

Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.533-537
    • /
    • 2007
  • This paper describes the heteroepitaxial growth of single-crystalline 3C-SiC (cubic silicon carbide) thin films on Si (100) wafers by atmospheric pressure chemical vapor deposition (APCVD) at 1350 oC for micro/nanoelectromechanical system (M/NEMS) applications, in which hexamethyldisilane (HMDS, Si2(CH3)6) was used as a safe organosilane single-source precursor. The HMDS flow rate was 0.5 sccm and the H2 carrier gas flow rate was 2.5 slm. The HMDS flow rate was important in obtaing a mirror-like crystalline surface. The growth rate of the 3C-SiC film in this work was 4.3 μm/h. A 3C-SiC epitaxial film grown on the Si (100) substrate was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman scattering, respectively. These results show that the main chemical components of the grown film were single-crystalline 3C-SiC layers. The 3C-SiC film had a very good crystal quality without twins, defects or dislocations, and a very low residual stress.

Initial On-Orbit Modulation Transfer Function Performance Analysis for Geostationary Ocean Color Imager

  • Oh, Eun-Song;Kim, Sug-Whan;Cho, Seong-Ick;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.199-208
    • /
    • 2012
  • The world's first geostationary ocean color imager (GOCI) is a three-mirror anastigmat optical system 140 mm in diameter. Designed for 500 m ground sampling distance, this paper deals with on-orbit modulation transfer function (MTF)measurement and analysis for GOCI. First, the knife-edge and point source methods were applied to the 8th band (865 nm) image measured April 5th, 2011. The target details used are the coastlines of the Korean peninsula and of Japan, and an island 400 meters in diameter. The resulting MTFs are 0.35 and 0.34 for the Korean East Coastline and Japanese West Coastline edge targets, respectively, and 0.38 for the island target. The daily and seasonal MTF variations at the Nyquist frequency were also checked, and the result is $0.32{\pm}0.04$ on average. From these results, we confirm that the GOCI on-orbit MTF performance satisfies the design requirements of 0.32 for 865 nm wavelength.

광학식 입자 계수기 내 샘플 노즐 직경이 측정 효율 및 특성에 미치는 영향에 대한 실험적 연구 (Experimental analysis on effects of nozzle diameter on detection characteristics of an optical particle counter)

  • 송현우;김태욱;송순호
    • 한국입자에어로졸학회지
    • /
    • 제13권4호
    • /
    • pp.159-164
    • /
    • 2017
  • The detection efficiency and characteristics of an optical particle counter (OPC), with various sample nozzle outlet diameters, were experimentally investigated. The OPC system, which was built with original design, was made up of a diode laser, two photodetectors, and a variety of optics such as a beam splitter and a concave mirror. The cone-shaped sampling nozzle was designed to be changeable to alter the outlet diameter, within the range of 1 to 3 mm. For samples, sets of polystyrene latex (PSL) standard particle with various sizes of 1 to $3{\mu}m$, were used. As a result, detection efficiency of the OPC greatly decreased with larger nozzle outlet diameter. Moreover, increased nozzle outlet diameter means broader sample flow, thus caused light interference and multiple scattering which results in abnormal high peaks in scattered light signal. The ratio of abnormal peaks to regular signal of single particle increased with larger nozzle outlet diameter.

Real-time Full-view 3D Human Reconstruction using Multiple RGB-D Cameras

  • Yoon, Bumsik;Choi, Kunwoo;Ra, Moonsu;Kim, Whoi-Yul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.224-230
    • /
    • 2015
  • This manuscript presents a real-time solution for 3D human body reconstruction with multiple RGB-D cameras. The proposed system uses four consumer RGB/Depth (RGB-D) cameras, each located at approximately $90^{\circ}$ from the next camera around a freely moving human body. A single mesh is constructed from the captured point clouds by iteratively removing the estimated overlapping regions from the boundary. A cell-based mesh construction algorithm is developed, recovering the 3D shape from various conditions, considering the direction of the camera and the mesh boundary. The proposed algorithm also allows problematic holes and/or occluded regions to be recovered from another view. Finally, calibrated RGB data is merged with the constructed mesh so it can be viewed from an arbitrary direction. The proposed algorithm is implemented with general-purpose computation on graphics processing unit (GPGPU) for real-time processing owing to its suitability for parallel processing.

Dual-zone reactor와 CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산 (Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle Using Dual-zone Reactor and CeO2/ZrO2 Foam Device)

  • 조지현;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제37권5호
    • /
    • pp.27-37
    • /
    • 2017
  • In this study, an artificial solar simulator composed of a 2.5 kW Xe-Arc lamp and mirror reflector was used to carry out the solar thermal two step thermochemical water decomposition cycle which can produce high efficiency continuous hydrogen production. Through various operating conditions, the change of hydrogen production due to the possibility of a dual-zone reactor and heat recovery were experimentally analyzed. Based on the reaction temperature of Thermal-Reduction step and Water-Decomposition step at $1,400^{\circ}C$ and $1,000^{\circ}C$ respectively, the hydrogen production decreased by 23.2% under the power off condition, and as a result of experiments using heat recovery technology, the hydrogen production increased by 33.8%. Therefore, when a thermochemical two-step water decomposition cycle is conducted using a dual-zone reactor with heat recovery, it is expected that the cycle can be operated twice over a certain period of time and the hydrogen production amount is increased by at least 53.5% compared to a single reactor.

반사거울형 태양광채광시스템의 주택적용 실험 (Application Experiment of Mirror Sunlighting System to House)

  • 정인영;김정태
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2005
  • 자연채광은 실내공간의 쾌적성을 향상시키며, 재실자의 건강을 증진시킬 뿐만 아니라 에너지 절약적인 측면에서 시너지 효과를 발휘하고 있다. 이에 반사거울형 태양광채광시스템은 도시가 과밀하고 고층화됨에 따라 자연채광의 도입이 어려운 실내공간에 태양광을 도입할 수 있는 자연에너지 활용장치라 할 수 있다. 본 연구는 태양광채광시스템을 이용하여 주거건물 옥상에 1차반사거울을 설치하고, 반지하의 상부에 2차반사거울을 설치하여 거실공간에 태양광을 유입하였다. 시스템 미설치시와 설치시에 대한 거실의 바닥면조도와 외부조도를 동시에 측정하여 외부조도에 대한 내부조도의 비율인 주광조도비를 분석하고, 증감율을 구하여 반사거울형 태양광채광시스템의 성능을 평가하였다. 채광성능평가 결과 채광시스템의 설치로 인한 실내 주광조도비는 평균 $80{\sim}1,400%$정도 증가하는 것으로 나타났으며, 또한 창면부에 비해 실의 후면부가 2배 이상 증가한 것으로 나타나 채광성능이 매우 큰 것으로 나타났다. 따라서 본 연구에서 실험한 반사거울형 태양광 채광시스템은 주거건물에서의 적용이 용이하고 높은 채광성능을 제공할 수 있어 실내 빛환경 향상에 크게 기여할 수 있을 것으로 기대된다.

  • PDF

고분해능 이색 PIV를 이용한 가솔린 엔진 연소실내 난류의 공간적 해석 (Spatial Analysis of Turbulent Flow in Combustion Chamber using High Resolution Dual Color PIV)

  • 이기형;이창식;이현직;전문수;주영철
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.132-141
    • /
    • 1998
  • Particle image velocimetry(PIV), a planar measuring technique, is an efficient tool for studying the complicated flow field such as in-cylinder flow, and intake port flow. PIV can be also used for analyzing the integral length scale of turbulence, which is a measure of the size of the large eddies that contain most of the turbulence kinetic energy. In this study, dual color scanning PIV was designed and demonstrated by using a rotating mirror and a beam splitter. This PIV system allowed enlargement of flexibility in the intensity of vectors to be calculated by spatial filtering technique, even in combustion chamber with high velocity gradient and high vorticity$({\sim}1000s^{-1})$. A new color image processing algorithm was developed, which was used to find the direction of particle movement directly from the digital image. These measuring techniques were successfully applied to obtaining the turbulence intensity (~0.1m/s) and the turbulent integral length scale of vorticity(~1mm).

  • PDF