• 제목/요약/키워드: Mirror Stage

Search Result 101, Processing Time 0.026 seconds

Optic-axis Alignment and Performance Test of the Schwarzschild-Chang Off-axis Telescope

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Jeong, Byeongjoon;Lee, Kwang Jo;Kim, Yonghwan;Ji, Tae-Geun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.4-57
    • /
    • 2017
  • The Schwarzschild-Chang off-axis telescope is a "linear astigmatism-free" confocal system. The telescope comprises two pieces of aluminum-alloy freeform mirrors that are fabricated with diamond turning machine (DTM) process. We designed optomechanical structures where optical components in the telescope system can be adjustable on a linear stage. Optomechanical deformation caused by the weight of system itself and its temperature variation is analyzed by the finite element analysis (FEA). The results show that the deformation is estimated in the tolerance range. For the optic-axis alignment of telescope system, three-point alignment (TPA) method is chosen. The TPA method uses three parallel lasers and a plane mirror. Point source images were taken from collimated light and field observation. The performance of optical system was tested by point spread function and aberration measurement of the point sources.

  • PDF

Preconditions for High Speed Confocal Image Acquisition with DMD Scanning.

  • Shim, S.B.;Lee, K.J.;Lee, J.H.;Hwang, Y.H.;Han, S.O.;Pak, J.H.;Choi, S.E.;Milster, Tom D.;Kim, J.S.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.39-40
    • /
    • 2006
  • Digital image-projection and several modifications are the classical applications of Digital Micromirror Devices (DMD), however further applications in the field of optical metrology are also available. Operated with certain patterns, a DMD can function, for instance, as an array of pinholes that may substitute the Galvanic mirror or the stage scanning system presently used for 2 dimensional scanning in confocal microscopes. The various process parameters that influence the result of measurement (e.g. pinhole size, lateral scanning pitch and the number of pinholes used simultaneously, etc.) should be configured precisely for individual measurements by appropriately operating the DMD. This paper presents suitable conditions for the diffraction limited analysis between DMD-optics-CCD to achieve the best performance. Also sampling theorem that is necessary for the image acquisition by scanning system is simulated with OPTISCAN which is the simulator based on the diffraction theory.

  • PDF

Development of Optical Fiber-based Daylighting System with Uniform Illumination

  • Ullah, Irfan;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.247-255
    • /
    • 2012
  • Daylighting has a very effective role in reducing power consumption and improving indoor environments in office buildings. Previously, it was not under consideration as a major source of renewable energy due to poor reliability in the design. Optical fiber as a transmission medium in the daylighting system demands uniform distribution of light to solve cost, heat, and efficiency issues. Therefore, this study focuses on the uniform distribution of sunlight through the fiber bundle and to the interior of the building. To this end, two efficient approaches for the fiber-based daylighting system are presented. The first approach consists of a parabolic mirror, and the second approach contains a Fresnel lens. Sunlight is captured, guided, and distributed through the concentrator, optical fibers, and lenses, respectively. At the capturing stage, uniform illumination solves the heat problem, which has critical importance in making the system cost-effective by introducing plastic optical fibers. The efficiency of the system is increased by collimated light, which helps to insert maximum light into the optical fibers. Furthermore, we find that the hybrid system of combining sunlight and light emitting diode light gives better illumination levels than that of traditional lighting systems. Simulation and experimental results have shown that the efficiency of the system is better than previous fiber-based daylighting systems.

A Motor-Driven Focusing Mechanism for Small Satellite (소형위성용 모터 구동형 포커싱 메커니즘)

  • Jung, Jinwon;Choi, Junwoo;Lee, Dongkyu;Hwang, Jaehyuck;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2018
  • The working principle of a satellite camera involves a focusing mechanism for controlling the focus of the optical system, which is essential for proper functioning. However, research on focusing mechanisms of satellite optical systems in Korea is in the beginning stage and developed technology is limited to a thermal control type. Therefore, in this paper, we propose a motor-driven focusing mechanism applicable to small satellite optical systems. The proposed mechanism is designed to generate z-axis displacement in the secondary mirror by a motor. In addition, three flexure hinges have been installed on the supporter for application of preload on the mechanism resulting in minimization of the alignment error arising due to manufacturing tolerance and assembly tolerance within the mechanism. After fabrication of the mechanism, the alignment errors (de-space, de-center, and tilt) were measured with LVDT sensors and laser displacement meters. Conclusively, the proposed focusing mechanism could achieve proper alignment degree, which can be applicable to small satellite optical system.

A 5.4Gb/s Clock and Data Recovery Circuit for Graphic DRAM Interface (그래픽 DRAM 인터페이스용 5.4Gb/s 클럭 및 데이터 복원회로)

  • Kim, Young-Ran;Kim, Kyung-Ae;Lee, Seung-Jun;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.19-24
    • /
    • 2007
  • With recent advancement of high-speed, multi-gigabit data transmission capabilities, serial links have been more widely adopted in industry than parallel links. Since the parallel link design forces its transmitter to transmit both the data and the clock to the receiver at the same time, it leads to hardware's intricacy during high-speed data transmission, large power consumption, and high cost. Meanwhile, the serial links allows the transmitter to transmit data only with no synchronized clock information. For the purpose, clock and data recovery circuit becomes a very crucial key block. In this paper, a 5.4Gbps half-rate bang-bang CDR is designed for the applications of high-speed graphic DRAM interface. The CDR consists of a half-rate bang-bang phase detector, a current-mirror charge-pump, a 2nd-order loop filter, and a 4-stage differential ring-type VCO. The PD automatically retimes and demultiplexes the data, generating two 2.7Gb/s sequences. The proposed circuit is realized in 66㎚ CMOS process. With input pseudo-random bit sequences (PRBS) of $2^{13}-1$, the post-layout simulations show 10psRMS clock jitter and $40ps_{p-p}$ retimed data jitter characteristics, and also the power dissipation of 80mW from a single 1.8V supply.

Measurement of Large Mirror Surface using a Laser Tracker (레이저트래커(Laser Tracker)를 이용한 대형 광학 거울의 형상 측정)

  • Jo, Eun-Ha;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.331-337
    • /
    • 2013
  • A large optical surface is fabricated by grinding, polishing and figuring. The grinding process is the most rapid and has the largest amount of fabrication of all processes. If we measure the surface precisely and rapidly in the grinding process, it is possible to improve the efficiency of the fabrication process. Since the surface of grinding process is rough and not shiny, it is not easy to measure the surface using light so that we cannot use an interferometer. Therefore, we have to measure the surface using a mechanical method. We can measure the surface under the grinding process by using a laser tracker which is a portable 3-dimensional coordinate measuring machine. In this paper, we used the laser tracker to measure the surface error of 1 m diameter spherical mirror. This measurement result was compared to that of an interferometer. As a result, surface measurement error was found to be $0.2{\mu}m$ rms (root mean square) and $2.7{\mu}m$ PV (Peak to Valley), which is accurate enough to apply to the rough surface under the grinding stage.

Design of 1.0V O2 and H2O2 based Potentiostat (전원전압 1.0V 산소 및 과산화수소 기반의 정전압분극장치 설계)

  • Kim, Jea-Duck;XIAOLEI, ZHONG;Choi, Seong-Yeol;Kim, Yeong-Seuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, a unified potentiostat which can measure the current of both $O_2$-based and $H_2O_2$-based blood glucose sensors with low supply voltage of 1.0V has been designed and verified by simulations and measurements. Potentiostat is composed of low-voltage operational transconductance amplifier, cascode current mirrors and mode-selection circuits. It can measure currents of blood glucose chemical reactions occurred by $O_2$ or $H_2O_2$. The body of PMOS input differentional stage of the operational transconductance amplifier is forward-biased to reduce the threshold voltage for low supply voltage operation. Also, cascode current mirror is used to reduce current measurement error generated by channel length modulation effects. The proposed low-voltage potentiostat is designed and simulated using Cadence SPECTRE and fabricated in Magnachip 0.18um CMOS technology with chip size of $110{\mu}m{\times}60{\mu}m$. The measurement results show that consumption current is maximum $46{\mu}A$ at supply voltage of 1.0V. Using the persian potassium($K_3Fe(CN)_6$) equivalent to glucose, the operation of the fabricated potentiostat was confirmed.

The Identification of Females Fans Identify with the Male Beauty Influencers in SNS - Focusing on Jacques Lacan's Gaze (SNS에 남성 뷰티 인플루언서를 향한 여성 팬의 동일시 - 라캉의 응시 이론을 중심으로)

  • LI LINGJIE
    • Trans-
    • /
    • v.15
    • /
    • pp.57-79
    • /
    • 2023
  • This study aims to explore the strategies and effects of SNS images used by four popular male beauty influencers to gain identification with their female fans. The research selected four male beauty influencers, namely Li Jiaqi, Jeffree Star, James Charles, and Bretman Rock, with a high number of subscribers on Instagram, YouTube, and TikTok as of July 21, 2023. By observing the content they posted on SNS, the study analyzed the types, characteristics, and relevance of male beauty influencer images with their female fans using Lacan's gaze theory. Additionally, concepts related to gaze, such as the mirror stage, the screen, and objet petit a, were supplemented to conduct an in-depth analysis of the characteristics of male beauty influencer images and the motivations of female viewers. The study results suggest that male beauty influencers can maintain an intimate relationship, referred to as 'girl-friendship,' with their female fans through the identification formed by the homogeneity within the feminized mirror images. Furthermore, male beauty influencers can transform female viewers from being seen as objects to seeing them as subjects by presenting images that embrace diversity in gender identity, challenging the traditional notions of societal gender norms. Therefore, the images of male beauty influencers not only challenge gender stereotypes but also cater to the demands for independence and equality of modern young women, promote understanding of feminine gaze, and explore the potential for democratization and inclusivity on social media platforms from a new perspective.

Implementation of Neuromorphic System with Si-based Floating-body Synaptic Transistors

  • Park, Jungjin;Kim, Hyungjin;Kwon, Min-Woo;Hwang, Sungmin;Baek, Myung-Hyun;Lee, Jeong-Jun;Jang, Taejin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.210-215
    • /
    • 2017
  • We have developed the neuromorphic system that can work with the four-terminal Si-based synaptic devices and verified the operation of the system using simulation tool and printed-circuit-board (PCB). The symmetrical current mirrors connected to the n-channel and p-channel synaptic devices constitute the synaptic integration part to express the excitation and the inhibition mechanism of neurons, respectively. The number and the weight of the synaptic devices affect the amount of the current reproduced from the current mirror. The double-stage inverters controlling delay time and the NMOS with large threshold voltage ($V_T$) constitute the action-potential generation part. The generated action-potential is transmitted to next neuron and simultaneously returned to the back gate of the synaptic device for changing its weight based on spike-timing-dependent-plasticity (STDP).

The Development and Application of Teaching Program to Utilize Emotional Intelligence Elements in Elementary School Science (초등학교 과학교과에서 정서지능 요소를 활용한 수업 프로그램의 개발과 적용)

  • Park, Jae-Keun;Moon, Bo-Ra
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.82-94
    • /
    • 2014
  • The purpose of this study is to develop teaching program which utilizes emotional intelligence elements as a measure to stimulate the motive and scientific attitude of learners and examine the effect of its application. The target unit for this study is 'world of plants' in the fourth grade of elementary school, and the teaching program is composed of 3 stages including I(encounter with myself), S(encounter with science), and U(encounter with friends). The teaching program is organized in the way to reflect 5 emotional intelligence elements including self-awareness, self-regulation, self-motivation, sympathy, and personal relations properly according to each stage of teaching program. The result of applying this program into actual classrooms is as follows. First, it is proven that the teaching program actually helps improving the motive of learners to study science. The emotional intelligence takes a role of positive motive for thinking, and the learners monitor their emotion and behavior patterns by using a mirror notebook to reduce their anxiety about science. Second, it is proven that the teaching program changes the science related attitude of learners positively. The emotional intelligence elements help the learners to create friendly feeling toward science subject and have a friendly attitude toward science and a sense of expectancy to science class. Third, it is proven that the teaching program contributes to the improvement of learners' science study achievement. The emotional intelligence takes an important role in improving the learners' science study achievement through the role of adjusting and controlling the recognition capability. However, emphasizing the emotional intelligence excessively also has a risk to break the balance between emotion and recognition, so it is considered that the balanced approach should be applied.