• Title/Summary/Keyword: Ministry of Education

Search Result 2,600, Processing Time 0.032 seconds

Metabolic Engineering of Saccharomyces cerevisiae to Improve Glucan Biosynthesis

  • Zhou, Xing;He, Jing;Wang, Lingling;Wang, Yang;Du, Guocheng;Kang, Zhen
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.758-764
    • /
    • 2019
  • ${\beta}$-Glucan is a chief structural polymer in the cell wall of yeast. ${\beta}$-Glucan has attracted intensive attention because of its wide applications in health protection and cosmetic areas. In the present study, the ${\beta}$-glucan biosynthesis pathway in S. Cerevisiae was engineered to enhance ${\beta}$-glucan accumulation. A newly identified bacterial ${\beta}-1$, 6-glucan synthase GsmA from Mycoplasma agalactiae was expressed, and increased ${\beta}$-glucan content by 43%. In addition, other pathway enzymes were investigated to direct more metabolic flux towards the building of ${\beta}$-glucan chains. We found that overexpression of Pgm2 (phosphoglucomutase) and Rho1 (a GTPase for activating glucan synthesis) significantly increased ${\beta}$-glucan accumulation. After further optimization of culture conditions, the ${\beta}$-glucan content was increased by 53.1%. This study provides a new approach to enhance ${\beta}$-glucan biosynthesis in Saccharomyces cerevisiae.

Complete Mitochondrial Genome of a Tongue Worm Armillifer agkistrodontis

  • Li, Jian;He, Fu-Nan;Zheng, Hong-Xiang;Zhang, Rui-Xiang;Ren, Yi-Jing;Hu, Wei
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.813-817
    • /
    • 2016
  • Armillifer agkistrodontis (Ichthyostraca: Pantastomida) is a parasitic pathogen, only reported in China, which can cause a zoonotic disease, pentastomiasis. A complete mitochondrial (mt) genome was 16,521 bp comprising 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes, and 1 non-coding region (NCR). A phylogenetic tree drawn with the concatenated amino acid sequences of the 6 conserved PCGs (atp6, cox1-3, and nad2) showed that A. agkistrodontis and Armillifer armillatus constituted a clade Pentastomida which was a sister group of the Branchiura. The complete mt genome sequence of A. agkistrodontis provides important genetic markers for both phylogenetic and epidemiological studies of pentastomids.

Effects of Marbling on Meat Quality Characteristics and Intramuscular Connective Tissue of Beef Longissimus Muscle

  • Li, Chunbao;Zhou, Guanghong;Xu, Xinglian;Zhang, Jingbo;Xu, Shuqin;Ji, Yanfeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1799-1808
    • /
    • 2006
  • This study was designed to explore the effects of marbling on meat quality characteristics and intramuscular connective tissue of beef longissimus muscle. Chemical determinations, histological and mechanical measurements were performed on the raw and cooked meat at d 4 postmortem. The results showed that crude fat, collagen, fiber diameter and maximum transition temperature of intramuscular connective tissue increased (p<0.05) with the increase of marbling score. The cooking losses, collagen solubility, WBSF and perimysial thickness decreased (p<0.05) with the increasing marbling. WBSF correlated (p<0.05) with moisture, crude fat, collagen, cooking losses, sarcomere length and perimysial thickness. The development of marbling results in the decline in cooking losses, the avoidance of sarcomere shortening, and the disorganization of the perimysia, which accounts for the improvement of beef tenderness.

Further study on improvement on strain concentration in through-diaphragm connection

  • Qin, Ying;Zhang, Jingchen;Shi, Peng;Chen, Yifu;Xu, Yaohan;Shi, Zuozheng
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • Hollow structural section (HSS) columns have been increasingly popular due to their structural and architectural merits. However, practical difficulty lies in developing proper connections. The through-diaphragm connections are considered as suitable connection type that is widely adopted in Asian countries. However, the stress concentration occurs at the location connecting through-diaphragm and steel beam. Furthermore, the actual load path from the beam flange is not uniformly transferred to the HSS column as conventionally assumed. In this paper, tensile tests were further conducted on three additional specimens with beam flange plate to evaluate the load versus displacement response. The load-displacement curves, yield and ultimate capacity, ductility ratio were obtained. Furthermore, the strain development at different loading levels was discussed comprehensively. It is shown that the studied connection configuration significantly reduces the stress concentration. Meanwhile, simplified trilinear load-displacement analytical model for specimen under tensile load was presented. Good agreement was found between the theoretical and experimental results.

Chemically Modified Sepharose as Support for the Immobilization of Cholesterol Oxidase

  • Yang, Hailin;Chen, Yi;Xin, Yu;Zhang, Ling;Zhang, Yuran;Wang, Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1212-1220
    • /
    • 2013
  • Because the cholesterol oxidase from Brevibacterium sp. M201008 was not as stable as the free enzyme form, it had been covalently immobilized onto chemically modified Sepharose particles via N-ethyl-N'-3-dimethylaminopropyl carbodiimide. The optimum immobilization conditions were determined, and the immobilized enzyme activity obtained was 12.01 U/g Sepharose-ethylenediamine. The immobilization of the enzyme was characterized by Fourier transform infrared spectroscopy. The immobilized enzyme exhibited the maximal activity at $35^{\circ}C$ and pH 7.5, which was unchanged compared with the free form. After being repeatedly used 20 times, the immobilized enzyme retained more than 40.43% of its original activity. The immobilized enzyme showed better operational stability, including wider thermal and pH ranges, and retained 62.87% activity after 20 days of storage at $4^{\circ}C$, which was longer than the free enzyme.

Synthesis of CdS, ZnS, and CdS/ZnS Core/Shell Nanocrystals Using Dodecanethiol

  • Niu, Jinzhong;Xu, Weiwei;Shen, Huaibin;Li, Sen;Wang, Hongzhe;Li, Lin Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.393-397
    • /
    • 2012
  • We report a new route to synthesize high quality zinc blende CdS and ZnS nanocrystals in noncoordinating solvent 1-octadecene, using dodecanethiol (DDT) molecules as both the sulfur source and surface capping ligands. Different reaction temperatures and Cd(Zn)/DDT molar ratios were tested to optimize the synthesis conditions. Absorption photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) were used to characterize assynthesized nanocrystals. The narrow half width at the half-maximum on the long wavelength side of the firstexcitonic absorption peak and TEM images demonstrated nearly monodisperse size distributions of asprepared CdS, ZnS, and CdS/ZnS core/shell nanocrystals. Only trap emissions of the nanocrystals were detected when the amount of DDT was excessive, this came from the strong quenching effect of thiol groups on the nanocrystal surfaces. After overcoating with ZnS shells, band-gap emissions of CdS nanocrystals were partially recovered.

A Social Motivation-aware Mobility Model for Mobile Opportunistic Networks

  • Liu, Sen;Wang, Xiaoming;Zhang, Lichen;Li, Peng;Lin, Yaguang;Yang, Yunhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3568-3584
    • /
    • 2016
  • In mobile opportunistic networks (MONs), human-carried mobile devices such as PDAs and smartphones, with the capability of short range wireless communications, could form various intermittent contacts due to the mobility of humans, and then could use the contact opportunity to communicate with each other. The dynamic changes of the network topology are closely related to the human mobility patterns. In this paper, we propose a social motivation-aware mobility model for MONs, which explains the basic laws of human mobility from the psychological point of view. We analyze and model social motivations of human mobility mainly in terms of expectancy value theory and affiliation motivation. Furthermore, we introduce a new concept of geographic functional cells, which not only incorporates the influence of geographical constraints on human mobility but also simplifies the complicated configuration of simulation areas. Lastly, we validate our model by simulating three real scenarios and comparing it with reality traces and other synthetic traces. The simulation results show that our model has a better match in the performance evaluation when applying social-based forwarding protocols like BUBBULE.

Dynamic Adjustment Strategy of n-Epidemic Routing Protocol for Opportunistic Networks: A Learning Automata Approach

  • Zhang, Feng;Wang, Xiaoming;Zhang, Lichen;Li, Peng;Wang, Liang;Yu, Wangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2020-2037
    • /
    • 2017
  • In order to improve the energy efficiency of n-Epidemic routing protocol in opportunistic networks, in which a stable end-to-end forwarding path usually does not exist, a novel adjustment strategy for parameter n is proposed using learning atuomata principle. First, nodes dynamically update the average energy level of current environment while moving around. Second, nodes with lower energy level relative to their neighbors take larger n avoiding energy consumption during message replications and vice versa. Third, nodes will only replicate messages to their neighbors when the number of neighbors reaches or exceeds the threshold n. Thus the number of message transmissions is reduced and energy is conserved accordingly. The simulation results show that, n-Epidemic routing protocol with the proposed adjustment method can efficiently reduce and balance energy consumption. Furthermore, the key metric of delivery ratio is improved compared with the original n-Epidemic routing protocol. Obviously the proposed scheme prolongs the network life time because of the equilibrium of energy consumption among nodes.

Ginseng-derived type I rhamnogalacturonan polysaccharide binds to galectin-8 and antagonizes its function

  • Yi Zheng;Yunlong Si;Xuejiao Xu;Hongming Gu;Zhen He;Zihan Zhao;Zhangkai Feng;Jiyong Su;Kevin H. Mayo;Yifa Zhou;Guihua Tai
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.202-210
    • /
    • 2024
  • Background: Panax ginseng Meyer polysaccharides exhibit various biological functions, like antagonizing galectin-3-mediated cell adhesion and migration. Galectin-8 (Gal-8), with its linker-joined N- and C-terminal carbohydrate recognition domains (CRDs), is also crucial to these biological processes, and thus plays a role in various pathological disorders. Yet the effect of ginseng-derived polysaccharides in modulating Gal-8 function has remained unclear. Methods: P. ginseng-derived pectin was chromatographically isolated and enzymatically digested to obtain a series of polysaccharides. Biolayer Interferometry (BLI) quantified their binding affinity to Gal-8, and their inhibitory effects on Gal-8 was assessed by hemagglutination, cell migration and T-cell apoptosis. Results: Our ginseng-derived pectin polysaccharides consist mostly of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG). BLI shows that Gal-8 binding rests primarily in RG-I and its β-1,4-galactan side chains, with sub-micromolar KD values. Both N- and C-terminal Gal-8 CRDs bind RG-I, with binding correlated with Gal-8-mediated function. Conclusion: P. ginseng RG-I pectin β-1,4-galactan side chains are crucial to binding Gal-8 and antagonizing its function. This study enhances our understanding of galectin-sugar interactions, information that may be used in the development of pharmaceutical agents targeting Gal-8.

${\alpha}$-Cyperone Alleviates Lung Cell Injury Caused by Staphylococcus aureus via Attenuation of ${\alpha}$-Hemolysin Expression

  • Luo, M.;Qiu, J.;Zhang, Y.;Wang, J.;Dong, J.;Li, H.;Leng, B.;Zhang, Q.;Dai, X.;Niu, X.;Zhao, S.;Deng, X.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1170-1176
    • /
    • 2012
  • In this study, we aimed to evaluate the effect of ${\alpha}$-cyperone on S. aureus. We used a hemolysin test to examine the hemolytic activity in supernatants of S. aureus cultured with increasing concentrations of ${\alpha}$-cyperone. In addition, we evaluated the production of ${\alpha}$-hemolysin (Hla) by Western blotting. Real-time RT-PCR was performed to test the expression of hla (the gene encoding Hla) and agr (accessory gene regulator). Furthermore, we investigated the protective effect of ${\alpha}$-cyperone on Hla-induced injury of A549 lung cells by live/dead and cytotoxicity assays. We showed that in the presence of subinhibitory concentrations of ${\alpha}$-cyperone, Hla production was markedly inhibited. Moreover, ${\alpha}$-cyperone protected lung cells from Hla-induced injury. These findings indicate that ${\alpha}$-cyperone is a promising inhibitor of Hla production by S. aureus and protects lung cells from this bacterium. Thus, ${\alpha}$-cyperone may provide the basis for a new strategy to combat S. aureus pneumonia.