Data Mining is used to discover patterns and relationships in huge amounts of data. Researchers in many different fields have shown great interest in data mining analysis. Using the classification technique of data mining analysis, the available model for Receiver Operating Characteristic(ROC) method is presented. We present that this may help analyze result of data mining techniques.
Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.
가행광산 지반침하 실태조사를 통하여 현 채광방법에 따른 지반침하 가능성과 대책을 분석하였다. 금속광산은 대부분 휴 폐광 상태로서 싱크홀의 침하양상을 나타내고 있다. 석탄광은 점점 더 심부화 되어가고 있으며, 기존 채광지역에서 트러프형의 침하양상을 보였다. 비금속 광산은 대규격 광산개발 이력이 30년 이내로서 크고 작은 지반변형의 문제가 조사되었다. 채광 또한 기술적 방법보다 경험적인 방법에 더 의존함으로써 시간 의존성에 따른 지반침하 가능성이 상존하였다. 따라서 비금속 광산 위주의 체계적인 개발방법과 지반침하 방지에 대한 다양한 연구가 수행 되어야 할 것으로 본다.
컴퓨터를 통해서 들어오는 다양한 형태의 침입을 효과적으로 탐지하기 위해서 이전에는 오용탐지 기법이 주로 이용되어 왔다. 오용탐지 기법은 이전에 알려지지 않은 침입 방법들을 효과적으로 탐지할 수 있기 때문이다. 하지만, 해당 기법에서는 정상적인 네트워크 접속 형태가 몇 가지 패턴으로 고정되어 있다고 가정한다. 이러한 이유 때문에 새로운 정상적인 네트워크 연결이 비정상행위로 탐지되기도 한다. 본 논문에서는 연관 마이닝 기법을 활용한 침입 탐지 방법을 제안한다. 논문에서 제안되는 방법은 패킷내 마이닝 단계와 패킷간 마이닝 두가지 단계로 구성된다. 제안된 방법의 성능은 대표적인 네트워크 침입 탐지 방법인 JAM과의 비교 실험을 통하여 평가하였다.
최근 모바일 컴퓨팅 시스템에서 위치 기반 서비스(Location Based System: LBS)에 대한 연구가 활발히 진행되고 있다. 시공간 이동 시퀀스 마이닝은 이동 경로 데이터로부터 사용자 이동 패턴을 추출하는 새로운 마이닝 기법이다. 시공간 이동 시퀀스 패턴 마이닝은 기존의 빈발 패턴 마이닝 기법과 유사하나 몇 가지 차이점이 있다. 빈발 패턴 마이닝은 장바구니 분석에서와 같이 고객이 구입한 아이템과 관련된 것이나 시공간 이동 시퀀스 패턴 마이닝은 사용자 이동 시퀀스 경로를 대상으로 한다. 또한 사용자의 관심도를 반영하기 위해 해당 위치에서의 소요시간을 고려한다. 본 연구는 대표적인 빈발 패턴 마이닝 기법의 하나인 Apriori 알고리즘에 이동 시퀀스 데이터를 적용하여 Apriori_msp 알고리즘을 제안하였으며 성능 평가를 수행한 결과를 제시하였다.
Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.
Hydrogen depth profiling was performed by H(19F, $\alpha$${\gamma}$) nuclear resonance reactin . A cesium sputtering ion sorce and 1.7MV Tandem Van de Graaff accelerator was used for the production of 6.5MeV 19F ion. The ${\gamma}$ rays produced by the reaction were measure dby 3" $\times$3" and 6" $\times$8" Nal detectors . A test measurement was done for hydrogen contaminatin layer of a bare silicon wafer, Si3N4(H) and Zr(O)a-Si/Si for the purpose of verifying the applicability , detection limit and the reliability of the method.ility of the method.
GSP와 같은 Apriori-like 순차패턴 마이닝 방법들은 마이닝 과정에서 많은 후보패턴들을 생성하고, 대용량 데이타베이스의 반복적인 탐색을 필요로 하는 문제점이 있다. 그리고 후보패턴들의 탐색공간을 줄이기 위해 단계별로 프레픽스-프로젝티드 (prefix-projected) 데이터베이스를 구성하는 PrefixSpan 방법은 탐색공간을 줄이지만 프로젝티드 데이터베이스의 구성비용이 문제가 된다. 효율적인 순차패턴 마이닝을 위해서는 후보패턴의 생성비용과 탐색공간을 모두 줄여야 한다. 본 논문에서는 이를 위한 새로운 순차패턴 마이닝 방법인 SuffixSpan(Suffix checked Sequential Pattern mining)을 설명하고, 이에 대한 형식적 접근을 보인다.
Process mining is a useful methodology that can be used for extracting user patterns in log files in order to discover efficient or inefficient processes in organizations. In general, it is used to find and reduce differences between pre-defined processes and actually executed processes in an organization. In this paper, we propose a method to improve processes in PDM/PLM systems based on process mining. In order to improve and detect the inefficient processes, we gathered event logs from PDM/PLM systems and derived process models using several process mining techniques such as ${\alpha}$-algorithm mining, heuristics mining, and fuzzy miner. By comparing original process models with process mining results, it is possible to detect differences between predefined processes and real ones; thereby we can build improved process models for future application.
데이터 마이닝은 다양한 분야에서 축적된 데이터로부터 필요한 지식을 탐사하기 위하여 널리 이용되고 있다. 연관규칙을 탐사하기 위하여 이벤트의 빈발 횟수에 기반을 둔 많은 방법들이 존재하지만, 이들은 이벤트가 연속적으로 발생하는 스트림 환경에는 적합하지 않다. 또한 실시간으로 연관규칙을 탐사해야 하는 스트림 환경에 적용하기에는 많은 비용이 든다. 이 논문에서는 스트림 환경에서 연관규칙을 탐사하기 위한 새로운 방법을 제안한다. 제안하는 방법은 데이터 스트림에서 목적 이벤트의 발생 간격에 따른 가변 윈도우로부터 이벤트의 존재 유무에 근거한 COBJ(Count object) 계산법을 이용하여 데이터 항목을 추출한다. 추출된 데이터는 FPMDSTN(Frequent Pattern Mining over Data Stream using Terminal Node) 알고리즘을 통해 실시간으로 연관규칙을 탐사한다. 실험 결과를 통해 제안하는 방법이 기존의 방법에 비해 스트림 환경에 효율적임을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.