• 제목/요약/키워드: Mining method

검색결과 2,073건 처리시간 0.027초

Enhancement of fluid flow performance through deep fractured rocks in an insitu leaching potential mine site using discrete fracture network (DFN)

  • Yao, Wen-li;Mostafa, Sharifzadeh;Ericson, Ericson;Yang, Zhen;Xu, Guang;Aldrich, Chris
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.585-594
    • /
    • 2019
  • In-situ leaching could be one of the promising mining methods to extract the minerals from deep fractured rock mass. Constrained by the low permeability at depth, however, the performance does not meet the expectation. In fact, the rock mass permeability mainly depends on the pre-existing natural fractures and therefore play a crucial role in in-situ leaching performance. More importantly, fractures have various characteristics, such as aperture, persistence, and density, which have diverse contributions to the promising method. Hence, it is necessary to study the variation of fluid rate versus fracture parameters to enhance in-situ leaching performance. Firstly, the subsurface fractures from the depth of 1500m to 2500m were mapped using the discrete fracture network (DFN) in this paper, and then the numerical model was calibrated at a particular case. On this basis, the fluid flow through fractured rock mass with various fracture characteristics was analyzed. The simulation results showed that with the increase of Fisher' K value, which determine the fracture orientation, the flow rate firstly decreased and then increased. Subsequently, as another critical factor affecting the fluid flow in natural fractures, the fracture transmissivity has a direct relationship with the flow rate. Sensitive study shows that natural fracture characteristics play a critical role in in-situ leaching performance.

Support working resistance determined on top-coal caving face based on coal-rock combined body

  • Cheng, Zhanbo;Yang, Shengli;Li, Lianghui;Zhang, Lingfei
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.255-268
    • /
    • 2019
  • Taking top-coal caving mining face (TCCMF) as research object, this paper considers the combination of top-coal and immediate roof as cushion layer to build the solution model of support resistance based on the theory of elastic foundation beam. Meanwhile, the physical and mechanical properties of coal-rock combination influencing on strata behaviors is explored. The results illustrate that the subsidence of main roof in coal wall increases and the first weighting interval decreases with the increase of top-coal and immediate roof thicknesses as well as the decrease of top-coal and immediate roof elastic modulus. Moreover, the overlying strata reflecting on support has negative and positive relationship with top-coal thickness and immediate roof thickness, respectively. However, elastic modulus has limit influence on the dead weight of top-coal and immediate roof. As a result, it has similar roles on the increase of total support resistance and overlying strata reflecting on support in the limit range of roof control distance. In view of sensitive analysis causing the change of total support resistance, it can be regards as the rank of three components as immediate roof weight > overlying strata reflecting on support > top coal weight. Finally, combined with the monitoring data of support resistance in Qingdong 828, the validity of support resistance determined based on elastic foundation beam is demonstrated, and this method can be recommended to adopt for support type selecting in TCCMF.

Effects of the borehole drainage for roof aquifer on local stress in underground mining

  • Shao, Jianli;Zhang, Qi;Zhang, Wenquan;Wang, Zaiyong;Wu, Xintao
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.479-490
    • /
    • 2021
  • Pre-drainage of groundwater in the roof aquifer by boreholes is the main method for prevention of roof water disaster, and the drop in the water level during the drainage leads to the variation of the local stress in the overlying strata. Based on a multitude of boreholes for groundwater drainage from aquifer above the 1303 mining face of Longyun Coal Mine, theoretical analysis and numerical simulation are used to investigate the local stress variation in the process of borehole drainage. The results show that due to the drop in the water level of the roof aquifer during the drainage, the stress around the borehole gradually evolved. From the center of the borehole to the outside, a stress-relaxed zone, a stress-elevated zone, and a stress-recovered zone are sequentially formed. Along with the expansion of drainage influence, the stress peak in the stress-elevated zone also moves to the outside. When the radius of influence develops to the maximum, the stress peak position no longer moves outward. When the coal mining face advances to the drainage influence range, the abutment pressure in front of the mining face is superimposed with the high local stress around the borehole, which increases the risk of stress concentration. The present study provides a reference for the stress concentration caused by borehole drainage, which can be potentially utilized in the optimal arrangement of drainage boreholes in underground mining.

빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝 (Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform)

  • 뉘엔양쯔엉;뉘엔반퀴엣;뉘엔신응억;김경백
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1593-1601
    • /
    • 2017
  • 빅데이터 플랫폼에서, 연관 룰 마이닝 응용프로그램은 여러 가치를 창출할 수 있다. 예를 들어, 농업 빅데이터 플랫폼에서 농가 소득을 높일 수 있는 농작물들을 농업인들에게 추천할 수 있다. 이 연관 룰 마이닝의 주요 절차는 빈발 아이템셋 마이닝으로, 이는 동시에 나타나는 아이템의 셋을 찾는 작업이다. Apriori를 비롯한 이전 연구에서는 대규모의 가능한 아이템 셋에 의한 메모리 오버로드의 이유로 만족할 만한 성능을 보일 수 없었다. 이를 개선하고자, 아이템 셋을 작은 크기로 분할하여 순차적으로 계산하도록 하는 SON 알고리즘이 제안되었다. 하지만, 단일 머신에서 SON 알고리즘을 돌릴 경우 많은 시간이 소요된다. 이 논문에서는 하둡기반의 빅데이터 플랫폼에서 SON 알고리즘 병렬처리 방식을 이용한 연관룰 탐색 기법을 소개한다. 연관 룰 마이닝을 위한 전처리, SON 알고리즘 기반 빈발 아이템셋 마이닝, 그리고 연관룰 검출 절차를 Hadoop기반의 빅데이터 플랫폼에 구현하였다. 실제 데이터를 활용한 실험을 통해 제안된 연관 룰 마이닝 기법은 Brute Force 기법의 성능을 압도하는 것을 확인하였다.

GIS-AMR 시스템에서 시공간 데이터마이닝 기법을 이용한 전력 소비 패턴의 분석 및 예측 (Analysis and Prediction of Power Consumption Pattern Using Spatiotemporal Data Mining Techniques in GIS-AMR System)

  • 박진형;이헌규;신진호;류근호
    • 정보처리학회논문지D
    • /
    • 제16D권3호
    • /
    • pp.307-316
    • /
    • 2009
  • 이 논문에서는 자동 원격 검침(AMR) 시스템에서 수집되는 전력 사용량 데이터의 분석 결과를 실세계에 적용하기 위하여 시간과 공간의 변화에 따른 전력 소비 패턴의 주기성 탐사를 위한 시공간 데이터마이닝 기법을 제안하였다. 첫째, 고객의 전력 사용 목적에 따른 군집 분석을 위하여 분할 군집화 기법을 적용하였다. 둘째, 3차원 큐브 마이닝 기법을 적용하여 고객의 전력 소비 데이터가 갖는 시간 속성과 공간 속성에 대한 패턴을 탐색하였다. 셋째, 다양한 시간 도메인에서의 주기 패턴 발견을 위한 캘린더 패턴 마이닝 기법을 이용하여 탐사된 패턴들이 갖고 있는 시간 속성의 의미와 관계를 분석 및 예측하였다. 제안된 시공간 데이터마이닝 기법을 평가하기 위해 한국 전력 연구원에서 구축된 GIS-AMR 시스템에 의해 제공되는 고압 전력 소비 고객 3,256명의 2007년 1월부터 4월까지 총 266,426건의 데이터로부터 시간의 주기성 및 공간적 특성을 포함한 전력 소비 패턴을 분석하였다. 제안한 분석 기법을 통하여 특정 그룹에 속한 각각의 대표 프로파일이 시간과 공간상에서 갖는 주기성을 발견하였다.

최적 연관 속성 규칙을 이용한 비명시적 단백질 상호작용의 예측 (Prediction of Implicit Protein - Protein Interaction Using Optimal Associative Feature Rule)

  • 엄재홍;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권4호
    • /
    • pp.365-377
    • /
    • 2006
  • 단백질들은 서로 다른 단백질들과 상호작용 하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질 상호작용의 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이타가 산출되고 있는 현(現) 게놈시대에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모(Saccharomyces cerevisiae)에 대해 공개되어있는 단백질 상호작용 데이타들에서 속성들 간의 연관을 통해 유추 가능한 잠재적 단백질 상호작용들을 예측하기 위한 연관속성 마이닝 방법을 제시한다. 단백질의 속성들 중 연속값을 가지는 속성값들은 최대상호 의존성에 기반을 두어 이산화 하였으며, 정보이론기반 속성선택 알고리즘을 사용하여 단백질들 간의 상호작용 예측을 위해 고려되는 단백질의 속성(attribute) 수 증가에 따른 속성차원문제를 극복하도록 하였다. 속성들 간의 연관성 발견은 데이타마이닝 분야에서 사용되는 연관규칙 발견(association rule discovery) 방법을 사용하였다 논문에서 제안한 방법은 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 최대 약 96.5%의 예측 정확도를 보였으며 속성필터링을 통하여 속성필터링을 하지 않는 기존의 방법에 비해 최대 약 29.4% 연관규칙 발견속도 향상을 보였다.

시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사 (Optimal Moving Pattern Mining using Frequency of Sequence and Weights)

  • 이연식;박성숙
    • 인터넷정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.79-93
    • /
    • 2009
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 개발하기 위한 목적으로 시공간 상에서 발생하는 이동 객체의 다양한 패턴들 중 의미있는 유용한 패턴을 추출하기 위한 시공간 패턴 탐사가 필요하다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터로부터 패턴 탐사를 통해 실세계에 적용 가능한 위치 기반 서비스의 개발에 대한 응용으로, STOMP(F)[25]에서 정의한 최적의 이동 패턴을 탐사하는 문제들을 기반으로 시간 및 공간 제약을 갖는 패턴을 추출하기 위한 새로운 탐사 기법인 STOMP(FW)를 제안한다. 제안된 기법은 패턴 빈발도 만을 이용한 기존 연구(STOMP(F)[25])에 가중치(거리, 시간, 비용 등)를 복합적으로 이용하는 패턴 탐사 방법으로, 특정한 지점들 사이를 이동한 객체의 이동 패턴들 중 패턴 빈발도가 특정 임계치 이상이고 가중치가 가장 적게 소요되는 이동 패턴을 최적 경로로 결정하는 방법이다. 제안된 방법의 패턴 탐사는 경험적인 이동 이력을 사용함으로써 기존의 최적 경로 탐색 기법들($A^*$, Dijkstra 알고리즘)이나 빈발도 만을 이용한 방법들 보다 접근하는 노드 수가 상대적으로 적어 보다 빠르고 정확하게 최적 패턴을 탐색할 수 있음을 보인다.

  • PDF

Knowledge Discovery in Nursing Minimum Data Set Using Data Mining

  • Park Myong-Hwa;Park Jeong-Sook;Kim Chong-Nam;Park Kyung-Min;Kwon Young-Sook
    • 대한간호학회지
    • /
    • 제36권4호
    • /
    • pp.652-661
    • /
    • 2006
  • Purpose. The purposes of this study were to apply data mining tool to nursing specific knowledge discovery process and to identify the utilization of data mining skill for clinical decision making. Methods. Data mining based on rough set model was conducted on a large clinical data set containing NMDS elements. Randomized 1000 patient data were selected from year 1998 database which had at least one of the five most frequently used nursing diagnoses. Patient characteristics and care service characteristics including nursing diagnoses, interventions and outcomes were analyzed to derive the meaningful decision rules. Results. Number of comorbidity, marital status, nursing diagnosis related to risk for infection and nursing intervention related to infection protection, and discharge status were the predictors that could determine the length of stay. Four variables (age, impaired skin integrity, pain, and discharge status) were identified as valuable predictors for nursing outcome, relived pain. Five variables (age, pain, potential for infection, marital status, and primary disease) were identified as important predictors for mortality. Conclusions. This study demonstrated the utilization of data mining method through a large data set with stan dardized language format to identify the contribution of nursing care to patient's health.

A New Method for Elimination of Zero-Sequence Voltage in Dual Three-Level Inverter Fed Open-End Winding Induction Motors

  • Geng, Yi-Wen;Wei, Chen-Xi;Chen, Rui-Cheng;Wang, Liang;Xu, Jia-Bin;Hao, Shuang-Cheng
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.67-75
    • /
    • 2017
  • Due to the excessive zero-sequence voltage in dual three-level inverter fed open-end winding induction motor systems, zero-sequence circumfluence which is harmful to switching devices and insulation is then formed when operating in a single DC voltage source supplying mode. Traditionally, it is the mean value instead of instantaneous value of the zero-sequence voltage that is eliminated, through adjusting the durations of the operating vectors. A new strategy is proposed for zero-sequence voltage elimination, which utilizes unified voltage modulation and a decoupled SVPWM strategy to achieve two same-sized equivalent vectors for an angle of $120^{\circ}$, generated by two inverters independently. Both simulation and experimental results have verified its efficiency in the instantaneous value elimination of zero-sequence voltage.

데이터 마이닝과 퍼지인식도 기반의 인과관계 지식베이스 구축에 관한 연구 (A Study on the Development of Causal Knowledge Base Based on Data Mining and Fuzzy Cognitive Map)

  • Kim, Jin-Sung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.247-250
    • /
    • 2003
  • Due to the increasing use of very large databases, mining useful information and implicit knowledge from databases is evolving. However, most conventional data mining algorithms identify the relationship among features using binary values (TRUE/FALSE or 0/1) and find simple If-THEN rules at a single concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen in real-world database and applications. In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal knowledge base form database. Acausal knowledge base construction algorithm based on Fuzzy Cognitive Map(FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to achieve this purpose. The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstration the effectiveness of the proposed algorithm.

  • PDF