• 제목/요약/키워드: Mining industry

검색결과 644건 처리시간 0.02초

초기 시청시간 패턴 분석을 통한 대흥행 드라마 예측 (Prediction of a hit drama with a pattern analysis on early viewing ratings)

  • 남기환;성노윤
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.33-49
    • /
    • 2018
  • TV 드라마는 타 장르에 비해 시청률과 채널 홍보 효과가 매우 크며, 한류를 통해 산업적 효과와 문화적 영향력을 확인시켜줬다. 따라서, 이와 같은 드라마의 흥행 여부를 예측하는 일은 방송 관련 산업에서 매우 중요한 부분임은 주지의 사실이다. 이를 위해서 본 연구에서는 2003년부터 2012년까지 10년간, 지상파 채널을 통해 방송된, 총 280개의 TV 미니시리즈 드라마를 분석하였다. 이들 드라마 중 평균 시청률 상위 45개, 하위 시청률 45개를 선정하여 흥행 드라마의 시청시간 분포 (5%~100%, 11-Step) 모형을 만들었다. 이들 기준 모형과 신규 드라마의 시청시간 분포와의 이격 거리를 Euclidean/Correlation으로 측정한 유사도(Similarity)를 통해, 시청자의 초기(1~5회) 시청시간 분포로 신규 드라마의 성패 여부를 예측하는 모델을 만들었다. 또한 총 방송 시간 중 70% 이상 시청한 시청자를 열혈 시청층(이하 열혈층) 으로 분류하고, 상위/하위 드라마의 평균값과 비교하여, 신규 드라마의 흥행여부를 판별할 수 있도록 설계하였다. 연구 결과 드라마의 초반 시청자 충성도(시청시간)는 드라마의 대흥행 여부를 예측하는데 중요한 요소임을 밝혔으며, 최대 75.47%의 확률로 대흥행 드라마의 탄생을 예측할 수 있었다.

스마트 전시 환경에서 프로모션 적용 사례 및 분석 (Case Analysis of the Promotion Methodologies in the Smart Exhibition Environment)

  • 문현실;김남희;김재경
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.171-183
    • /
    • 2012
  • 세계가 급변하고 시시각각 발전하는 기술 속에서 전시 산업은 국가와 기업의 중요한 홍보 수단으로 부각되고 있다. 특히, 전시회에 참여하는 참여업체는 상품 또는 서비스를 전시하고 메시지를 전달하기 위해 마련된 개별 전시공간을 통해 기업들과 소비자들에게 단기간에 신제품과 신기술에 대한 정보를 제공할 수 있으며 국내외 시장의 욕구와 추세변화 및 경쟁업체들에 대한 정보를 파악할 수 있다. 참여업체들은 이러한 참가 목적의 달성을 위해 다양한 프로모션을 계획하고 실행하며 프로모션 정보를 참관객에게 실시간으로 제공할 수 있는 스마트 전시 환경의 구축은 이전보다 다양한 프로모션 기법의 적용 및 실행을 가능하게 하였다. 하지만, 이러한 스마트 전시 환경의 발전에도 불구하고 현재 실행되고 있는 프로모션은 참관객의 욕구나 목표에 대한 이해가 부족한 상태에서 무차별적인 매스마케팅 형태로 진행되어 그 본래의 목적을 상실하고 있다. 따라서, 본 연구에서는 참여업체의 차별화된 프로모션의 계획과 실행을 위해 기존에 널리 사용되는 마케팅 기법인 STP 전략의 프로세스를 도입하여 스마트 전시 환경에서 프로모션에 적합한 참관객을 자동적으로 선정하여 프로모션 정보를 제공하는 시스템을 제안하였다. 특히, 본 연구에서는 다음과 같은 스마트 전시회의 특성을 고려한다. 먼저, 전시회는 전시업체가 관람객과 상호작용하기 위해 모인 일시적이고 시간에 민감한 시장이다. 따라서, 불충분한 기존 참관객의 정보를 이용하는 것이 아닌 신규 참관객 분석의 관점에서 서비스를 제공할 수 있어야 한다. 두 번째로, 스마트 전시 환경에서는 참관객의 정보를 실시간으로 획득할 수 있다는 장점이 있는 반면에 데이터의 분석 및 서비스의 제공이 실시간으로 이루어져야 한다. 마지막으로, 참관객이 스마트 전시 환경에서 만들어 내는 데이터를 활용하는 기법이 필요하다. 스마트 전시 환경에서는 유용한 데이터를 실시간으로 획득할 수 있어 참관객이 전시회 내에서 하는 활동을 분석하는 행위적 세분화에 근거한 접근방식이 필요하다. 이러한 특성을 고려하여 본 연구에서는 제안한 시스템을 실제 전시회에 파일럿 시스템 형태로 적용하여 참관객을 실시간으로 분류 및 분석하고 각 메시지에 대한 성과를 측정하는 실험을 진행하였다. 그 결과, 전시 참관객의 행동 패턴을 4가지로 분류하여 각 군집별 특성을 프로모션 메시지의 성과로 측정하여 그에 적합한 프로모션 전략을 도출하였다. 이러한 프로모션 전략은 실제 전시 참여업체의 프로모션 기획 및 실행에 중요한 전략적 도구로 사용되어 프로모션 성과를 높일 수 있을 것으로 기대된다.

사례 기반 지능형 수출통제 시스템 : 설계와 평가 (Export Control System based on Case Based Reasoning: Design and Evaluation)

  • 홍원의;김의현;조신희;김산성;이문용;신동훈
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.109-131
    • /
    • 2014
  • 최근 전 세계적인 원전 설비의 수요 증가로 원자력 전략물자 취급의 중요성이 높아지는 가운데, 국외 수출을 위한 원전 관련 물품 및 기술의 신청 또한 급증하는 추세이다. 전략물자 사전판정 업무는 통상 원자력 물자 관리에 해박한 전문가의 경험 및 지식에 근거하여 수행되어 왔지만, 급증하는 수요에 상응하는 전문 인력의 공급이 부족한 실정이다. 이러한 문제를 극복하기 위하여, 본 연구진은 전략물자 수출 통제를 위한 사례 기반 지능형 수출 통제 시스템을 설계 및 개발하였다. 이 시스템은 현장 전문가의 전담 업무이던 신규 사례에 대한 전략물자 사전판정 과정 업무의 주요 맥락을 자동화 하여 전문가 및 관계 기관이 감당해야 할 업무 부담을 줄이며, 빠르고 정확한 판정을 돕는 의사결정 지원 시스템의 역할을 맡는다. 개발된 시스템은 사례 기반 추론 (Case Based Reasoning) 방식에 기반을 두어 설계되었는데, 이는 과거 사례의 특성을 활용하여 신규 사례의 해법을 유추하는 추론 방법이다. 본 연구에서는 자연어로 작성된 전자문서 처리에 널리 사용되는 텍스트 마이닝 분석 기법을 원자력 분야에 특화된 형태로 응용하여 전략물자 수출통제 시스템을 설계하였다. 시스템 설계의 근거로 선행 연구에서 제안된 반자동식 핵심어 추출 방안의 성능을 보다 엄밀히 검증하였고, 추출된 핵심어로 신규 사례와 유사한 과거 사례를 추출하는 알고리즘을 제안하였다. 제안된 방안은 텍스트 마이닝 분야의 TF-IDF 방법 및 코사인 유사도 점수를 활용한 결과(${\alpha}$)와 원자력 분야에서 통용되는 개념적 지식을 계통으로 분류하여 도출한 결과(${\beta}$)를 조합하여 최종 결과 (${\gamma}$) 를 생성하게 된다. 세부 요소 기술의 성능 검증은 임상 데이터를 활용한 실험 및 실무 전문가의 의견수렴을 통해 이루어졌다. 개발된 시스템은 사전판정 전문 인력을 다수 양성하는 데 드는 비용을 절감하는 데 일조할 것이며, 지식서비스 산업의 의미 있는 응용 사례로서 관련 산업의 성장에 기여할 수 있을 것으로 보인다.

협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템 (SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering)

  • 조용민;남기환
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.77-110
    • /
    • 2017
  • 최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.