• 제목/요약/키워드: Minimum oil film thickness

검색결과 59건 처리시간 0.022초

씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향 (Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing)

  • 방경보;최용훈;조용주
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.

초임계 CO2 발전용 파워터빈을 지지하는 틸팅패드 베어링의 열윤활 해석 및 패드 온도 측정 (Thermal Analysis and Temperature Measurement of Tilting Pad Bearings Supporting a Power Turbine for the Supercritical CO2 Cycle Application)

  • 이동현;김병옥;임형수
    • Tribology and Lubricants
    • /
    • 제34권2호
    • /
    • pp.43-48
    • /
    • 2018
  • This paper presents the thermohydrodynamic analysis of tilting journal pad bearings supporting a power turbine rotor applied to a 250 kW super-critical $CO_2$ cycle. In the analysis, the generalized Reynolds equation and 3D energy equation are solved to predict oil film temperature and the 3D heat conduction equation is solved for pad temperature. The power turbine rotor is supported by two tilting pad bearings consisting of five pads with an oil supply block between the pads. Copper backing pads with higher thermal conductivity compared to steel backing pads are adopted to improve thermal management. The predicted maximum pad temperature is around $55^{\circ}C$ which is approximately $15^{\circ}C$ higher than oil supply temperature. In addition, the predicted minimum film thickness is 50 mm at a rotating speed of 5,000 rpm. These results indicate that there is no issue in the thermal behavior of the bearing. An operation test is performed with a power turbine module consisting of a power turbine, a reduction gear and a generator. Thermocouples are installed at the 75% position from the leading edge of the pad to monitor pad temperature. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation. The steady state pad temperatures measured in the test show good agreement with the predicted temperatures.

끝단 지지 로커암형 오버 헤드 밸브트레인의 캠/종동자 마모 특성에 미치는 밸브트레인 레이아웃의 영향 (Effect of Valve Train Layout on Cam/Tappet Wear Characteristics of End Pivot Rocker Arm Type OHC Valve Train)

  • 이종원;장재영;김도중
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.184-192
    • /
    • 2001
  • Cam/tappet wear is one of the critical concerns in valve train deign. Maximum contact stress and minimum oil film thickness between the cam and tappet are usually checked for the estimation of wear characteristics. If the two extreme cases arise simultaneously, there is a strong possibility of cam/tappet wear. In this paper, effects of valve train layout on the wear characteristics were studied. Especially for swinging arm type valve trains, initial geometric layout must be very carefully defined to avoid wear problems. The study was performed fur an end pivot type OHC valve train, which had severe wear problems. Analysis results show that some geometric parameter affect very sensitively on the wear characteristics. Experiments were also performed for the original and modified valve trains, which strongly support the analysis results.

  • PDF

Seizure Failure of Engine Crankshaft Bearings

  • Ni, X.;Cheng, H.S.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.162-171
    • /
    • 1995
  • The application of reciprocating engine crankshaft bearings is of particular importance and interest among the plain bearing, not only because the sheer volume of intemal combustion engines now produced, but because the severe operating conditions they are subjected to. Demands for better performances of crankshaft bearings have provide an important impetus in the development of bearings and bearing materials. As engine design progresses toward higher outpt and higher efficiency, crankshaft bearings must perform under more seveve operating conditions. Higher load, temperature, and speed as well as lower viscosity oil are applied to the bearing sysem, resulting in a smaller minimum oil film thickness. This means more solid-solid contact between the shaft and bearing, and the bearing is exposed to more danger of seizure. Some engines may experience bearing seizure problems. However, understanding about the seizure behavior and mechanism is far from being enough. Seizure resistance of a bearing-shaft system will be affected by the properties of the shaft and bearing, especially their materials and surface texture. Commonly used engine bearing materials include Al-Pb-Si, Al-Sn-Si, Al-Sn, and Cu-Pb with Pb-Sn-Cu overlay. These materials have very different properties. They showed different behaviors dering seizure tests and seizure may occur with different mechanism for different bearing material. Shaft materials also affect the seizure resistance of the system. Surface texture of the bearing and shaft have apparent effects on the lubrication and solid-solid contact pattern, and therefore will affect the seizure behavior of the system. Bearings and shafts which are made of different materials and have different surface textures have been tested and analyzed. Their effects on seizure resistance are discussed and possible seizure mechanisms for different beatings are presented in this paper.

3 패드 가스 포일 저널 베어링의 프리로드 증가에 따른 성능 해석 (Analysis of Three-Pad Gas Foil Journal Bearing for Increasing Mechanical Preloads)

  • 이종성;김태호
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, a three-pad gas foil journal bearing with a diameter of 40 mm and an axial length of 35 mm was modeled to predict the static and dynamic performances with regard to an increasing mechanical preload. The Reynolds equation for an isothermal and isoviscous ideal gas was coupled with a simple elastic foundation foil model to calculate the hydrodynamic pressure solution iteratively. In the prediction results, the journal eccentricity, journal attitude angle, and minimum film thickness decreased, but the friction torque increased with the preload. A quick comparison implied a lower load capacity but higher stability for a three-pad gas foil bearing compared to a one-pad gas foil journal bearing. The direct stiffness coefficients increased with the preload, but the cross-coupled stiffness coefficients decreased. The direct damping coefficient increased in the horizontal direction but decreased in the vertical direction as the preload increased. These model predictions will be useful as a benchmark against experimental test data.

선박엔진 부품의 성능 향상을 위한 초기 마모 및 윤활 해석 연구 (Simulation of the Initial Wear and Lubrication Performance of Marine Engine Components)

  • 차수빈;이향;정구현
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.227-234
    • /
    • 2022
  • Recently, the demand for improving energy efficiency has rapidly increased because of the growing concerns over environmental issues. In this work, the tribo-test and simulation for the initial wear and lubrication performance were performed for the piston pin in the small end system of the connecting rod of a marine engine, to obtain useful data for improving the efficiency of marine engine systems. In addition, a diamond-like carbon (DLC) coating was applied to the piston pin to explore feasibility of eliminating the bush used in the system. The initial wear and lubrication characteristics between the uncoated piston pin and bush were compared with that between the DLC-coated piston pin and connecting rod in the tribo-test. The simulation for the wear and lubrication performance according to the wear progression was conducted based on the data obtained from the test. The wear characteristics were quantitatively assessed by the wear depth and wear volume, and the lubrication performance was characterized with the change of pressure and minimum oil film thickness with respect to the crank angle. It was found that the DLC-coated piston pin may provide better initial wear characteristics and lubrication performance. The results of this work may provide fundamental information for marine engines with improved efficiency.

편백나무 추출물을 함유한 다공성 필름 분석 (An Analysis of a Porous Film Containing $Chamaecyparis$ $obtusa$ Extract)

  • 김경이;이은경
    • 한국식품영양학회지
    • /
    • 제24권4호
    • /
    • pp.551-558
    • /
    • 2011
  • 본 연구는 식품의 신선도를 유지하기 위한 효과적인 식품 포장 물질로서 항균성질을 갖는 편백나무 추출물을 함유한 다공성 필름의 성능과 효능을 알아보고자 하였다. 나무가 갖는 특유의 향인 피톤치드 정유는 휘발성 화학물질로서, 항균성 기능을 가지고 있는 천연물질이다. Limonene은 편백나무 정유중의 한 성분으로 분해없이 증류되며, 효과적인 항균성분을 나타내는 한편 비교적 안정한 테르펜류이다. 피톤치드 정유를 함유한 효과적인 항균성 필름을 제조하기 위한 용매의 최적조건을 찾은 결과, T-500:에탄올:경화제의 비율이 5:20:0.3이었고, 최소 항균성을 나타내는 피톤치드 정유의 농도는 2%였다. 피톤치드는 기체상 접촉을 통한 적용법이 항곰팡이성 효과가 크게 나타난다. 피톤치드를 포함한 필름들이 A-50LF1, A-25SF2, B-50SF1, C-50LF1, C-25SF2, D-50SF1와 같이 여러가지 다른 조건으로 만들어졌고, $1{\ell}$ 반응기 안에서 저장기간에 따르는 limonene 성분을 얻기 위하여 GC-MSD 분석을 하였다. 그 결과, 항균층 폭이 25 mm, 길이 20 cm인 필름 2개를 사용했을 때가 항균층 50 mm, 길이 20 cm 필름 1개를 사용했을 때보다 밀폐된 반응기에 limonene이 더 많이 보유되어 있음을 알 수 있었다. 이 결과는 필름 제조 시 안쪽 필름의 20 ${\mu}m$의 기공 쪽보다 옆 단면 층과 층 사이의 기체 확산이 더 크게 일어난다는 것을 보여주었다. 필름 두께가 피톤치드 방출량에 미치는 영향은 필름이 두꺼울수록 초기에는 오히려 덜 방출되었으나, 하루가 지나면서 저장기간이 길어질수록 방출량이 증가하는 경향을 보였다. $35^{\circ}C$와 70% 습도 조건에서 14일 동안 식빵 저장 실험에서 곰팡이 유무를 확인한 결과, 작은 사이즈 2개를 넣었을 때가 큰 사이즈 1개를 넣었을 때보다 저장기간이 길게 나타났다. 신선도 유지성분인 편백 정유가 갖는 항균성분 중, limonene의 방출 특성과 조건을 분석함으로써 필름조건의 자료를 공유하여 향후 식품에 대한 적용 확대가 기대된다.

범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석 (Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps)

  • 김태호;문형욱
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

음향방출을 이용한 저어널 베어링의 조기파손감지(II) - 윤활유 이물질 혼입의 영향 및 감시 - (Acoustic Emission Monitoring of Incipient Failure in Journal Bearing Part II : Intervention of Foreign Particles in Lubrication)

  • 윤동진;권오양;정민화;김경웅
    • 비파괴검사학회지
    • /
    • 제14권2호
    • /
    • pp.122-131
    • /
    • 1994
  • 일반적으로 회전기기의 저어널 베어링 부분은 윤활유 공급의 부족이나 윤활층에 이물질이 혼입되면 시스템의 고장이나 가동중단 등의 원인이 되기도 한다. 따라서 베어링 손상에 기인하는 사고와 관련된 안전운전 문제와 유지비용의 절감을 위해 여러가지 파괴 및 비파괴시험법들이 사용되어 왔다. 본 연구에서는 저어널 베어링에서 가장 발생하기 쉬운 윤활층에의 이물질 혼입에 의해 야기되는 베어링 파손의 조기검출을 위해 음향방출 기술을 적용하였으며, 전보의 연구에 이어 좀더 정량적이고 체계적인 실험을 수행하였다. 실험실용으로 직접 제작한 모의 베어링 시스템을 이용하여 여러 형태의 인위적인 이물질 혼입 상태를 만들어 실험하였으며 베어링 손상 및 결함 형태의 해석을 위해 AE rms level, 파형분석, AE 변수 등의 여러 파라메터를 사용하여 분석 고찰하였다. 그 결과 AE rms level의 변화가 이물질 혼입의 영향에 민감함을 보여주었으며 AE 변수 등 다른 정보들로부터 손상 원인별로 신호형태를 확인할 수 있었다.

  • PDF