• Title/Summary/Keyword: Minimum inflow

Search Result 83, Processing Time 0.022 seconds

The Evaluation of Hydrogen Leakage Safety for the High Pressure Hydrogen System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 수소 누출 안전성 평가)

  • Kim, Hyun-Ki;Choi, Young-Min;Kim, Sang-Hyun;Shim, Ji-Hyun;Hwang, In-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.4
    • /
    • pp.316-322
    • /
    • 2012
  • A fuel cell vehicle has the hydrogen detection sensors for checking the hydrogen leakage because it use hydrogen for its fuel and can't use a odorant to protect the fuel cell stack. To verify the hydrogen safety of leakage we select the high possible leak points of fittings in hydrogen storage system and test the leaking behavior at them. The hydrogen leakage flow rate is 10, 40, 118 NL/min and the criterion for maximum hydrogen leakage is based on allowing an equivalent release of combustion energy as permitted by gasoline vehicles in FMVSS301. There are total 18EA hydrogen leakage detection sensors installed in test system. we acquire the hydrogen leakage detection time and determine the ranking. Hydrogen leakage detection time decrease when hydrogen leakage flow rate increase. The minimum hydrogen leakage detection time is about 3 seconds when the flow rate is 118NL/min. In this study, we optimize hydrogen sensor position in fuel cell vehicle and verify the hydrogen leakage safety because there is no inflow inside the vehicle.

Evaluation of Indoor Radon Levels in a Hospital Underground Space and Internal Exposure (의료기관 지하시설의 라돈가스 측정과 내부피폭 조사)

  • Song, Jea-Ho;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.231-235
    • /
    • 2011
  • Radium is rock or soil of crust or uranium of building materials and thorium after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like mine or basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. Radium sheath of medical institution treat person's life is possible big danger to professional regarding radioactivity who has much amount exposed radioactivity and weaker immune patient. so we do this test. Using measuring instrument at test is real time radium measuring instrument, Professional Continuous Radon monitor, and measuring places are basement first floor and second floor of two hospitals and measure from 10 a.m to 3 p.m. Measurement result of Professional Continuous Radon monitor is minimum 14.8 Bq/$m^3$ to maximum 70.3 Bq/$m^3$ and show domestic baseline below 148 Bq/$m^3$, effective dose-rate is minimum 0.296 mSv to maximum 1.406 mSv that show 2.4 mSv, 10~58.3% level, exposed radiation amount from nature radiation one year.

The Study on the Phytoplankton Bloom and Primary Productivity in Lake Shihwa and Adajcent Coastal Areas (시화호와 시화호 주변 해역 식물플랑크톤의 대증식과 일차 생산력에 관한 연구)

  • Choi, Joong-Ki;Lee, Eun-Hee;Noh, Jae-Hoon;Huh, Sung-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1997
  • To clarify the phytoplankton blooms in Lake Shihwa after the construction of a dyke, a study on the environmental factors, the distribution of chlorophyll-a, phytoplankton standing stocks, dominant species and primary productivity was carried out in Lake Shihwa and adjacent coastal areas from October, 1995 to August, 1996. Lake Shihwa is brackish water with mixing of freshwater from tributaries and the remaining salt water at the bottom. The dense phytoplankton bloom of average value of 168.6 ${\mu}gChl-a\;l^{-1}$ have occurred throughout the year in Lake Shihwa which is eutrophicated by the large input of nutrients from inflowing 5 tributaries and Shihwa Industrial Complex. The major organisms of algal bloom in Lake Shihwa were diatoms, Cyclotella atomus, Nitzschia sp. and Chaetoceros sp. in autumn and winter, and dinoflagellate Prorocentrum minimum and Chrysophyceae in spring and summer. The autumn and winter diatom blooms were limited by the depletion of silicate in the lake. Diatom blooms have occurred in the coastal areas adjacent to Shihwa lake from winter to summer due to the inflow of nutrient rich-water from Lake Shihwa. The primary productivities in the Lake Shihwa ranged from 2,653 mgC $m^{-2}\;day^{-1}$ to 9,505 mgC $m^{-2}\;day^{-1}$ with an average of 3,972 mgC $m^{-2}\;day^{-1}$. However, most of the high primary production was limited to the shallow euphotic zone due to the inhibition of light penetration. The primary productivities during autumn and winter were limited by the depletion of silicate. Lack of photosynthesis and the decomposition of falling organic matter under the middle of water column accelerated the depletion of dissolved oxygen in the bottom layer.

  • PDF

Evaluation of Hydraulic Stability Using Real Scale Experimental on Porous Concrete Revetment Block (다공성콘크리트 호안블록의 실규모 실험을 통한 수리안정성 평가)

  • Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.122-130
    • /
    • 2016
  • The past few decades of industrialization enabled human-centered stream developments, which in turn resulted in constructing straight or covered streams, which are used only for sewage disposal purpose. However, these types of streams have become the cause of flood damages such as localized heavy rain. In response, various construction methods have been implemented to prevent stream and embankment damages. However, regulations regarding these measures only lay out minimum standards such as the height of slopes and the minimum angle of inclination. Moreover, examination of tractive force, the most crucial factor in preventing flood damage, is nonexistent. Therefore, this study evaluates various tractive forces by implementing a porous concrete tetrapod at a full scale artificial stream for experiment, controlling the rate of inflow, and measuring the velocity and depth of the stream under different experiment conditions. The test results of the compressive strength, and porosity and density of rock of the porous concrete tetrapod was between 16.6 and 23.2 MPa, and the actual measurement of air void was 10.1%, thus satisfying domestic standard. The result of tractive force experiment showed a limiting tractive force of $47.202N/m^2$, not satisfying the tractive force scope of $67N/m^2$ the stream design working expertise proposes. However, there was neither damage nor loss of blocks and hardpan. Based on previous researches, it can be expected that there will be resistance against a stronger tractive force. Therefore, it is necessary to conduct another experiment on practical limiting tractive force by adjusting some experimental conditions.

Hydrologic Regime Alteration Analysis of the Multi-Purpose Dam by Indicators of Hydrologic Alterations (수문변화 지표법에 의한 다목적댐의 유량변화 분석)

  • Park, Bong-Jin;Kang, Ki-Ho;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.711-723
    • /
    • 2008
  • In this study, Hydrologic regime alterations(magnitude, magnitude and duration of annual extreme, frequency and duration of high and low pulse, rate and frequency of water condition changes, Range of Variability Approach) were analyzed by using Indicators of Hydrologic Alterations at the 11 major multi-purpose dam. The analysis result of the magnitude of monthly water conditions during drought season, inflow was $6.38m^3/sec{\sim}39.84m^3/sec$ and outflow was $20.36m^3/sec{\sim}49.43m^3/sec$, was increased $1.84%{\sim}200.98%$. The analysis result of the magnitude of monthly water conditions during flood season, inflow was from $79.06m^3/sec{\sim}137.12m^3/sec$ and outflow was from $65.32m^3/sec{\sim}80.16m^3/sec$, was decreased from $18.19%{\sim}40.39%$. The analysis result of the magnitude and duration of annual extreme, 1-day minimum was increased $82.86%{\sim}2,950%$, but 1-day maximum was decreased $34.78%{\sim}83.96%$. The analysis result of the frequency and duration of high and low pulse, low pulse count was decreased $29.67%{\sim}99.07%$ and high pulse count was also decreased $4.6%{\sim}92.35%$ after dam operation. Hydrograph rise rate was decreased $15.84%{\sim}79.31%$ and fall rate was $1.97%{\sim}107.10%$. RVA of 1-day minimum was increased $0.60{\sim}2.67$, also RVA of 1-day maximum was decreased $0.50{\sim}1.00$.

Mineralogy and Geochemistry of Quaternary Fault Gouges in the Southeastern Korean Peninsula (한반도 동남부 제4기 단층 비지의 광물학적 및 지구화학적 연구)

  • 손승완;장태우;김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • XRF, XRD, EPMA have been used to investigate microstructures and mineralogical changes caused by the faulting and fluids associated with faulting in the Quaternary fault gouge zones at the Sangchon, Ipsil and Wangsan faults located at the southeastern part of the Korean Peninsula. The chemical compositions of faulted rocks and protoliths analyzed by XRF show that the fault gouges are relatively enriched in TiO$_2$, P$_2$O$_{5}$, MgO, and Fe$_2$O$_3$) compared with protoliths, indicating that the fluids associated with faulting were highly activated. XRD results show that the fault gouges predominantly consist of quartz, feldspar, calcite and clay minerals. Clay minerals formed in the gouge zones are mainly composed of smectite characterized by a dioctahedral sheet. Based on EPMA analyses various kinds of sulfide, carbonate, phosphate minerals were identified in the gouge zones and protoliths. Xenotime of grey fault gouge of the Sangchon fault and sulfide minerals of contact andesitic rock of Ipsil fault and contact grey andesitic rock of Wangsan fault were probably formed by inflow of hydrothermal solution associated with faulting prior to the Quaternary. Carbonate minerals of contact andesitic rock and gouge zone of the Ipsil fault were formed by inflow of fluid associated with faulting prior to the Quaternary. They are heavily fractured and have reaction rim on their edge, indicating that faultings and inflow of fluids were highly activated after carbonate minerals were formed. Calcites of Wangsan fault seemed to be formed in syntectonic or posttectonic Quaternary faulting.g.

Elementary School in Gwangju Gwangsan Radon gas Density Measurement (광주광역시 광산구 소재 초등학교 라돈가스 농도 계측)

  • Ahn, Byungju;Oh, Jihoon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • Radium is rock or soil of crust or uranium of building materials after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. In this study, the air in the elementary school classroom nongdoeul tonkatsu place of measured values were compared using the calculated annual internal radiation exposure. La tonkatsu exposure measured in primary school classroom at least five schools when you close the windows in the average floor 0.56mSv 2 floors ground floor windows when opened 0.384mSv 048mSv 3 floors, 2 floor levels of the same three layers 0.31mSv 0.296mSv the human exposure to radon and radiation on the first floor of 3 floors above ground in a lot of exposure was moderate. When you close the window from the first floor up 0.384mSv 056mSv 3 floors with a minimum annual radiation exposure due to natural radiation in the 16 to 23.3 percent minimum 2.4mSv accounted for. When I opened the window to the maximum annual radiation exposure 2.4mSv 0.296mSv 0.31mSv least a minimum of 12.3 to 12.91% accounted for Results suggest that more than five chodeunghakgyoeun La tonkatsu domestic radon measurements conducted below regulatory requirements and internal exposure has also fall within the normal range. People The less the radiation exposure to the human body because it reduces the impact in the classroom in elementary school vent windows often reduced to the maximum radon concentration in the air, if called tonkatsu be able to reduce radiation exposure for the immune system is weak and elementary will be helpful to experiment more in the future for the school authorities called tonkatsu investigation is done to him if the action to establish a more secure school building facilities is thought would be helpful.

Practical Application of Mn-Cu Metal Catalyst for the Removal of Acetaldehyde (아세트알데히드 제거를 위한 Mn-Cu 금속촉매 실용화에 관한 연구)

  • Jung, Sung-Chul;Lee, Seung-Hwan
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.201-210
    • /
    • 2012
  • Because sensing odor varies depending on each person, even if the odor is released in line with the legal emission permission concentration levels, it can still become a social issue if a civil complaint is made. The purpose of this research is to study the possibility of putting Mn-Cu metallic oxide catalysts into practical use to economically eliminate acetaldehyde which produces a odor in the industrial process. An optimal operating parameter to eliminate acetaldehyde was deduced through a performance evaluation in the research laboratory and the performance was verified by applying the parameter into an actual facility as an on-the-site experiment through a Scale-up of pilot size. The operating temperature of the metallic oxide catalysts researched so far was at the minimum close to $220^{\circ}C$, and the $220^{\circ}C$ elimination efficiency was 50% or below. However, having experimented by using a Mn-Cu metallic oxide catalyst in this research, optimum elimination efficiency showed when space velocity (GHSV) was equal to or below 6,000 $hr^{-1}$. The average elimination efficiency was 61.2% when the catalyst controlling temperature was $120^{\circ}C$, 93.3% when the catalyst controlling temperature was $160^{\circ}C$, and 94.9% when catalyst controlling temperature was $180^{\circ}C$, thereby reflecting high elimination efficiency. The specific surface area of the catalyst was $200m^2/g$ before use, however, was reduced to $47.162m^2/g$ after 24 months and therefore showed that despite the decrease in specific surface area as time passed, there was no significant influence on the performance. Having operated Mn-Cu metallic oxide catalyst systems for at least two years on a site where there was no inflow of toxins like sulfur compounds and acidic gases, we were able to confirm that elimination efficiency of at least 90% was maintained.

Optimal Design of Drainage Pipe Considering a Distance of Storm Water Grate Inlet in Road (도로의 빗물받이 간격을 고려한 우수관거 최적설계)

  • Chang, Dong-Eil;Lee, Jung-Ho;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.53-58
    • /
    • 2008
  • This study presented a design model optimizing a distance of inlet with drainage pipe laid under the gutter in road. When the distance of inlet changed, a basin for the gutter divided by the distance of inlet and the inflow coming into the gutter would be changed. In this case, the change of inlet distance causes the change of a diameter of drainage pipe and slope because of the change of capacity. Therefore, the optimization is needed to design the combination of them for the distance of inlet. Genetic Algorithm is used to determine the optimal combination of them. The conditions of road and the precipitation were assumed like a real and the range of inlet distance adopted $10{\sim}30\;m$ which has been introduced in domestic. This model presented the optimal distance of inlet and the combination of pipe and slope through the minimum cost. The result of the study is that the optimal distance of inlet is different from each slope of road and it can reduce about 20% of total cost for the distance of inlet.

The Characteristic of Long Term Variation of the Water Quality from Hansan-Geoje bay, Korea (한산거제만 해역의 수질 장기변동 특성)

  • Kwon, Jung-No;Park, Young-Chul;Eom, Ki-Hyuk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.189-201
    • /
    • 2013
  • To study characteristics of the water quality in the Hansan-Geoje bay, we analyzed the long term monitoring data collected at the two sites during the period of 1987~2010. The trophic state of the waters in Hansan-Geoje bay was the mesotrophic level by the classification of Wasmud et al.[2001]. The water nutrients increased steadily from a wet season (Aug.), it reached the maximum concentration peak in a dry season (Nov.), and then decreased steadily to the winter, it reached at the minimum value in May in the next year. The result of factor analysis divided the waters of Hansan-Geoje bay into the five factors (nutrient, season, inflow land water, pollution, internal production) and the factors represented the 76.82% on the status of the waters. According to time series analysis, temperature, DO and bottom DIP were increased, and pH and COD were decreased during the period of 1987~2010. In particular, the fluctuation trend of DIN has been turned from oversupply to shortage by the N/P ratio since before and after 1990's. The water quality of the Hansan-Geoje bay has been recovered except DIP since 1987, despite of its geographical characteristic which is a general semi-closesd bay and a massive aqua-culture ground. To preserve the waters in Hansan-Geoje bay, we need to know on the cause of the increase or accumulation of DIP, and we should continue to study on the interrelation between the aqua-culture and water environment.