• Title/Summary/Keyword: Minimum cover set

Search Result 28, Processing Time 0.026 seconds

THE DOMINATION COVER PEBBLING NUMBER OF SOME GRAPHS

  • Kim, Ju Young;Kim, Sung Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.403-408
    • /
    • 2006
  • A pebbling move on a connected graph G is taking two pebbles off of one vertex and placing one of them on an adjacent vertex. The domination cover pebbling number ${\psi}(G)$ is the minimum number of pebbles required so that any initial configuration of pebbles can be transformed by a sequence of pebbling moves so that the set of vertices that contain pebbles forms a domination set of G. We determine the domination cover pebbling number for fans, fuses, and pseudo-star.

  • PDF

THE CONDITIONAL COVERING PROBLEM ON UNWEIGHTED INTERVAL GRAPHS

  • Rana, Akul;Pal, Anita;Pal, Madhumangal
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.1-11
    • /
    • 2010
  • The conditional covering problem is an important variation of well studied set covering problem. In the set covering problem, the problem is to find a minimum cardinality vertex set which will cover all the given demand points. The conditional covering problem asks to find a minimum cardinality vertex set that will cover not only the given demand points but also one another. This problem is NP-complete for general graphs. In this paper, we present an efficient algorithm to solve the conditional covering problem on interval graphs with n vertices which runs in O(n)time.

A Polynomial Time Algorithm for Vertex Coloring Problem (정점 색칠 문제의 다항시간 알고리즘)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.85-93
    • /
    • 2011
  • The Vertex Coloring Problem hasn't been solved in polynomial time, so this problem has been known as NP-complete. This paper suggests linear time algorithm for Vertex Coloring Problem (VCP). The proposed algorithm is based on assumption that we can't know a priori the minimum chromatic number ${\chi}(G)$=k for graph G=(V,E) This algorithm divides Vertices V of graph into two parts as independent sets $\overline{C}$ and cover set C, then assigns the color to $\overline{C}$. The element of independent sets $\overline{C}$ is a vertex ${\upsilon}$ that has minimum degree ${\delta}(G)$ and the elements of cover set C are the vertices ${\upsilon}$ that is adjacent to ${\upsilon}$. The reduced graph is divided into independent sets $\overline{C}$ and cover set C again until no edge is in a cover set C. As a result of experiments, this algorithm finds the ${\chi}(G)$=k perfectly for 26 Graphs that shows the number of selecting ${\upsilon}$ is less than the number of vertices n.

Conditional Covering : Worst Case Analysis of Greedy Heuristics

  • Moon, I.Douglas
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.2
    • /
    • pp.97-104
    • /
    • 1990
  • The problem is a variation of the weighted set-covering problem (SCP) which requires the minimum-cost cover to be self-covering. It is shown that direct extension of the well-known greedy heuristic for SCP can have an arbitrarily large error in the worst case. It remains an open question whther these exists a greedy heuristic with a finite error bound.

  • PDF

Hyper-Rectangle Based Prototype Selection Algorithm Preserving Class Regions (클래스 영역을 보존하는 초월 사각형에 의한 프로토타입 선택 알고리즘)

  • Baek, Byunghyun;Euh, Seongyul;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.3
    • /
    • pp.83-90
    • /
    • 2020
  • Prototype selection offers the advantage of ensuring low learning time and storage space by selecting the minimum data representative of in-class partitions from the training data. This paper designs a new training data generation method using hyper-rectangles that can be applied to general classification algorithms. Hyper-rectangular regions do not contain different class data and divide the same class space. The median value of the data within a hyper-rectangle is selected as a prototype to form new training data, and the size of the hyper-rectangle is adjusted to reflect the data distribution in the class area. A set cover optimization algorithm is proposed to select the minimum prototype set that represents the whole training data. The proposed method reduces the time complexity that requires the polynomial time of the set cover optimization algorithm by using the greedy algorithm and the distance equation without multiplication. In experimented comparison with hyper-sphere prototype selections, the proposed method is superior in terms of prototype rate and generalization performance.

Efficient Content Sharing using the Selection of Minimum Forwarding Peers in an Ad Hoc Network (최소의 Forwarding Peer 선택을 통한 애드 혹 네트워크에서의 효율적 콘텐츠 분배 방법)

  • Kang, Seung-Seok
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.165-173
    • /
    • 2009
  • Recent portable devices are so versatile that they have multiple communication channels and play several multimedia formats. Especially, many services are under development for users who connect Internet or nearby devices via WWAN (Wireless Wide Area Network) and/or WLAN (Wireless LAN). In case of paying the telecommunication cost proportional to the amount of data downloaded, it is necessary to reduce the cost by constructing a special ad hoc network in which each participating peer downloads a specific portion of the want-to-be-shared content over the payable WWAN channel and exchanges the remaining portion with other peers using the cost-free WLAN channel. If all peers participate in forwarding packets, some transmissions are redundant which results in the unnecessary consumption of bandwidth as well as the delayed content distribution time. In order to reduce the redundant transmission, this paper proposes both the excluding method which discourages some peers not to forward redundant packets, and the minimum cover set method in which only the minimum number of peers are in charge of forwarding packets. These two methods obviate redundant packet forwarding, and result in reduction of content distribution time by up to around 29%.

Classification of Land Cover over the Korean Peninsula using MODIS Data (MODIS 자료를 이용한 한반도 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.169-182
    • /
    • 2009
  • To improve the performance of climate and numerical models, concerns on the land-atmosphere schemes are steadily increased in recent years. For the realistic calculation of land-atmosphere interaction, a land surface information of high quality is strongly required. In this study, a new land cover map over the Korean peninsula was developed using MODIS (MODerate resolution Imaging Spectroradiometer) data. The seven phenological data set (maximum, minimum, amplitude, average, growing period, growing and shedding rate) derived from 15-day normalized difference vegetation index (NDVI) were used as a basic input data. The ISOData (Iterative Self-Organizing Data Analysis), a kind of unsupervised non-hierarchical clustering method, was applied to the seven phenological data set. After the clustering, assignment of land cover type to the each cluster was performed according to the phenological characteristics of each land cover defined by USGS (US. Geological Survey). Most of the Korean peninsula are occupied by deciduous broadleaf forest (46.5%), mixed forest (15.6%), and dryland crop (13%). Whereas, the dominant land cover types are very diverse in South-Korea: evergreen needleleaf forest (29.9%), mixed forest (26.6%), deciduous broadleaf forest (16.2%), irrigated crop (12.6%), and dryland crop (10.7%). The 38 in-situ observation data-base over South-Korea, Environment Geographic Information System and Google-earth are used in the validation of the new land cover map. In general, the new land cover map over the Korean peninsula seems to be better classified compared to the USGS land cover map, especially for the Savanna in the USGS land cover map.

Competitive Algorithm of Set Cover Problem Using Inclusion-Exclusion Principle (포함-배제 원리를 적용한 집합피복 문제의 경쟁 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.165-170
    • /
    • 2023
  • This paper proposes an algorithm that can obtain a solution with linear time for a set cover problem(SCP) in which there is no polynomial time algorithm as an NP-complete problem so far. Until now, only heuristic greed algorithms are known to select sets that can be covered to the maximum. On the other hand, the proposed algorithm is a competitive algorithm that applies an inclusion-exclusion principle rule to N nodes up to 2nd or 3rd in the maximum number of elements to obtain a set covering all k nodes, and selects the minimum cover set among them. The proposed algorithm compensated for the disadvantage that the greedy algorithm does not obtain the optimal solution. As a result of applying the proposed algorithm to various application cases, an optimal solution was obtained with a polynomial time of O(kn2).

Deformation of Corrugated Steel Plate Culverts in the Areas with Minimum Depth (최소토피고 미확보 구간에 시공한 파형강판 암거의 변형 특성)

  • Kim, Myoungil;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.23-30
    • /
    • 2014
  • This paper deals with the characteristics of deformation of the underground corrugated steel plate culverts constructed in the areas where the minimum depth of within 1.5 m soil cover is not secured in the bottom of highways. The underground corrugated steel plate culverts at shallow depth are often designed and constructed with the consideration of the minimum depth of soil cover according to the design standards, which was made in order to minimize any deformation. Additionally, if under unfavorable conditions, slabs are set up for stress relaxation to disperse and minimize the weight of loads transferred to the corrugated steel plate culverts. Nevertheless, if the underground corrugated steel plate culverts are built in areas where the minimum depth of soil cover inevitably cannot be secured, there may occur some deformation. In this paper, a research was carried out to identify the characteristics of deformation in areas where the minimum depth of soil cover is not secured. The result shows that there existed the deterioration of pavement and in its smoothness around the corners of slabs for stress relaxation. To this end, this paper studied the structural stability of the underground corrugated steel plate culverts established in the areas with no minimum depth of soil cover secured, with the consideration of causes and solutions of pavement deterioration.

An Enumeration Algorithm for the Rolling Stock Requirement Plan (철도차량소요계획을 위한 열거알고리듬)

  • Kim Seongho;Kim Dong-Hee;Choi Tae-Sung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.514-521
    • /
    • 2004
  • A routing is the path that an actual train set follows as it moves from one train to another train in a timetable. The number of routings is equivalent to the number of trainsets required to cover the timetable. The primary factors of rolling stock requirement plan include evaluating the minimum number of routings. This can be formulated as a set partitioning problem and solved using enumeration method or column generation method. In this paper we presents an enumeration algorithm which is useful to implement the enumeration method for the rolling stock requirement plan.

  • PDF