• 제목/요약/키워드: Minimum Principal stress

검색결과 48건 처리시간 0.024초

일반화된 Hoek-Brown 파괴기준식을 만족하는 최소주응력의 해석적 근사식 (Approximate Analytical Formula for Minimum Principal Stress Satisfying the Generalized Hoek-Brown Failure Criterion)

  • 이연규
    • 터널과지하공간
    • /
    • 제31권6호
    • /
    • pp.480-493
    • /
    • 2021
  • 일반화된 Hoek-Brown(GHB) 파괴기준식은 GSI 값을 이용하여 현장 암반조건이 반영된 강도정수 값을 효과적으로 결정할 수 있기 때문에 암반공학 분야에서 표준 파괴기준식의 하나로 인식되고 있다. 그러나 GHB 파괴기준식의 비선형적 형태는 이 식의 수학적 취급을 어렵게 하고 이 식의 적용 범위를 제약하는 요인이 되고 있다. GHB 파괴기준식의 이러한 단점을 극복하기 위한 노력의 하나로 Taylor 다항함수 근사원리를 적용하여 파괴 최대주응력에 대응하는 최소주응력을 근사적으로 계산할 수 있는 명시적, 해석적 수식을 유도하였다. 근사식으로 구한 최소주응력과 수치해석적으로 계산한 정해를 비교하여 이 연구에서 유도한 최소주응력 근사식의 정확성을 검증하였다. 연구결과의 응용사례를 제시하기 위해 근사 최소주응력 계산식을 활용하여 GHB 암반에 굴착된 원형터널 주변에 예상되는 소성영역의 등가 마찰각과 등가 점착력을 계산하였다. 소성영역의 등가 Mohr-Coulomb 강도정수를 정밀하기 산정하기 위해서는 mi, GSI, 초기지압의 크기를 동시에 고려하는 것이 중요한 것으로 나타났다.

TWO DIMENSIONAL STUDY OF HYDRAULIC FRACTURING CRITERIA IN COHESIVE SOILS

  • 유택영사
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 연약지반처리위원회 봄 학술발표회 논문집 연약지반처리
    • /
    • pp.3-12
    • /
    • 1994
  • Based on the shear failure mechanism, hydraulic fracturing criteria are extended to three dimensional stress state. According to the situation of the directions of borehole and major principal stress axes, three equations can be derived for three dimensional hydraulic fracturing problems. By comparing these equations, a single criterion is selected for hydraulic fracturing pressure in cohesive soils. The criterion is a function of maximum principal stress, minimum principal stress and soil parameters in UU conditions. The equation indicates that with any increase in maximim principal stress, hydraulic fracturing pressure decreases. In order to prove the integrity of the criteria, laboratory tests are performed on compacted cubical specimens using true a triaxial apparatus. The shape and direction of fractures are determined by injecting colored water after fracture initiation. It is found that the direction of fractures are perpendicular to the o1 plane.

  • PDF

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study

  • Mirac Berke Topcu, Ersoz;Emre, Mumcu
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권6호
    • /
    • pp.346-359
    • /
    • 2022
  • PURPOSE. Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS. In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO2, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS. The maximum and minimum principal stresses in bone were determined as CoCr < ZrO2 < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO2 < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION. For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.

빗물저장 및 활용을 위한 보도블럭구조의 최적화 (An Optimization of a Walkway Block Structure for Rainwater Harvesting)

  • 조태준;손병직
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권1호
    • /
    • pp.40-47
    • /
    • 2018
  • 다공성 보도 블록은 이미 많이 사용되지만, 큰 침투성으로 인해 블록의 강도를 감소시키고, 균열 및 침전의 문제를 만든다. 본 연구에서는 최소 주응력의 결정된 위치를 설계하고 검증하기 위하여, 이동하는 체중하중에 대한 보행로 블록에서의 최소 주응력의 위치를 결정함으로써, 주어진 문제에 대한 최적해를 제시하였다. 최소 주응력의 결정된 위치에 대한 검증 예를, 내부에 빗물을 저장하기위한 통행보도의 탄성 기초상의 2 차원 블록 부재에 대하여 제시하였다. 전단력의 합력에 대한 최소값은 ${\times}1$이 58.58 mm(전체 스팬의 30%, 200 mm)일 때, 최소 변형은 ${\times}2=80mm$(전체 스팬의 70%, 200 mm)에 있다. 수정 된 모델에서, 이동하는 경계 조건(보도 보행 하중)이 ${\times}1$(= 0 mm)에 있을 때, 168 mm (스팬의 84%, 200 mm)에서 최소 주응력의 위치가 발견되었으며, 스프링으로 모델링 된 기초의 응답에 대하여 모델링하였다. 결과적으로, 중립 축(${\times}2=167mm$)에서의 빗물저장을 위한 보도블럭의 "0"변형 위치가 3 차원 FEM 분석 검증을 통하여 결정되었다.

유한요소해석을 이용한 마늘 수확기 굴취부의 응력분석 (Finite Element Analysis Approach for the Stress of Digging Part of Garlic Harvesters)

  • 김규봉;이명희;김대철;조용진
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.78-86
    • /
    • 2020
  • A stress analysis was performed to verify the stability of the digging part of a garlic harvester. A finite element analysis was performed to examine the distribution and concentrated loads on the digging part of the blade and contact plate. Moreover, the stability and maximum deformation of the digging part were determined. Under a distributed load, the maximum principal stress, total deformation, and minimum safety factor ranged from 64-128 MPa, 0.35-0.70 mm, and 2.9-5.7, respectively. The analysis results for the distribution load indicated that the maximum stress occurred at the center of the blade. In contrast, under the concentrated load, the maximum principal stress, total deformation, and minimum safety factor ranged from 66-247 MPa, 0.35-0.79 mm, 1.48-5.53, respectively. The analysis results for the concentrated load indicated that stress and deformation were larger toward the edge and center, respectively.

Brittle Deformation History Based on the Analyses of Dikes and Faults within Sedimentary Rocks on Geoje Island, SE Korea

  • Hategekimana, Francois;Kim, Young-Seog
    • 지질공학
    • /
    • 제31권3호
    • /
    • pp.239-255
    • /
    • 2021
  • Kinematic analyses of magmatic intrusions and faults can provide useful information on stress conditions and chronological relationships between dike emplacement and brittle deformation events. We studied structures in rocks exposed on a coastal platform in Geoje Island off the southern Korean Peninsula because of its well-developed dikes and faults. The geology of the study area includes the Cretaceous Seongpo-ri Formation, which is composed mostly of shale, sandstone, and hornfels intruded by magmatic dikes. Most of the dikes are developed along pre-existing structural features (faults and fractures), indicating that their emplacements were structurally controlled. Because dikes commonly open along the direction of the minimum principal stress, the direction of this stress can be obtained from dike geometry and orientation through the matching of piercing points on either side of a dike. In addition, the deformed dikes can give information regarding later deformation. On the basis of the kinematic analyses, we identified five deformation events in the study area, which are kinematically related to changes of the regional maximum principal stress. Results indicate that the structures in the study area have been controlled predominantly by episodes of reactivation of the NNE-trending Yangsan strike-slip fault, located to the northeast of the study area, under different stress regimes. In a wider tectonic context, the brittle deformation of the rocks of Geoje Island was probably induced by interactions among the Philippine Sea, Pacific, and Eurasian plates, including changes in subduction parameters with respect to the latter two plates over time.

치아결손이 측두하악관절의 응력분포에 미치는 영향에 관한 유한요소법적 분석 (A Finite Element Analysis of Stress Distribution in the Temporomandibular Joints Following the Teeth Loss)

  • Woo-Cheon Kee;Jae-Kap Choi;Jae-Hyun Sung
    • Journal of Oral Medicine and Pain
    • /
    • 제16권1호
    • /
    • pp.33-72
    • /
    • 1991
  • The purpose of this study was to investigate the stress distribution and the displacement in the temporomandibular joints following the teeth loss patterns. The three dimensional finite element method was used for a mathematical model. The finite element model was composed of 1,632 elements and 2,411 nodes in the mandible with articular disc and mandibular fossa of the temporal bone. The masseter, the temporal and the internal pterygoid muscle forces were applied at each insertion site, bisecting point of gonion and antegonion, tip of the coronoid process, and gonion at the ration of 2:2:1 respectively. The directions of muscles force were obtained from frontal and lateral cephalometric tracings using bony landmarks of the skull. The results were as follows : 1. In control model, the minimum principal stresses were concentrated on the region of anterosuperior part of the condyle head and articular disc, and maximum principal stresses on the anterior part of the condyle head and posterolateral part of the articular disc. 2. In case of unilateral teeth loss, the greater principal stress appeared at the teeth loss side and the principal stresses increased at the teeth loss side as the number of the posterior teeth loss went up. 3. In case of bilateral teeth loss, the principal stresses were greater than those of the control model and as the number of the posterior teeth loss increased, the grater principal stresses on the temporomandibular joints appeared at the both side. 4. When the posterior teeth existed bilateral, the principal stress patterns were similar to those of the control model. 5. The displacement ws directed mainly upward and backward in the upper part of the temporomandibular joints and upward and forward in the largest part of the condyle head. The displacement increased as the number of the posterior teeth loss went up.

  • PDF

부분 관통 구멍이 있는 인장판의 주응력 분포 차이 해석 (Analysis of Principal Stress Distribution Difference of Tensile Plate with Partial Through-hole)

  • 박상현;김영철;김명수;백태현
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권2호
    • /
    • pp.437-444
    • /
    • 2017
  • 기계구조물 부재의 단면에 구멍이나 또는 단면이 급격히 변화할 경우, 불연속 부분 주위에서 응력집중이 일어나며 파손이 발생하는 주요 원인이 된다. 그 이유는 부재에 작용하는 평균 응력보다 응력집중 부분에서 훨씬 큰 응력이 작용하기 때문이다. 본 논문에서는 시편의 부분 관통 구멍 주위에서 응력해석을 수행하여 구멍을 통과하는 선상의 주응력 차 값을 구하였다. 광탄성에서 최대주응력과 최소주응력의 차이는 등색프린지 차수와 재료의 프린지 상수를 곱한 값을 빛이 통과한 거리 즉, 시편의 두께로 나눈 값과 같다. 즉, 주응력의 차이는 광탄성 프린지 차수와 비례관계가 있으므로 유한요소해석에 의한 주응력 차이의 분포를 광탄성 실험결과에 비교할 수 있다. 유한요소 범용 소프트웨어인 ANSYS Workbench를 이용하였으며 유한요소법으로 해석된 값을 광탄성 실험으로부터 측정된 값과 비교한 결과 유사한 결과를 얻었다. 이로서 유한요소해석 결과는 실험결과와의 비교를 통해 타당성이 입증될 수 있었다. 또한 구멍깊이 변화에 따라 나타나는 응력분포를 사용하여 응력집중계수를 구하였다. 구멍깊이가 증가할수록 응력집중계수는 증가함을 나타냈다.

골조직과 임플랜트 계면의 최소접촉분율에 관한 삼차원 유한요소분석적 연구 (THREE DIMENSIONAL FINITE ELEMENT ANALYSIS ON THE MINIMUM CONTACT FRACTION OF BONE-IMPLANT INTERFACE)

  • 장경수;김영수;김창회
    • 대한치과보철학회지
    • /
    • 제35권4호
    • /
    • pp.627-646
    • /
    • 1997
  • In order to find the degree of osseointegration at bone-implant interface of clinically successful implants, models including the 3.75mm wide, 10mm long screw type $Br{\aa}nemark$ implant as a standard and cylinder, 15mm long, 5.0mm wide, two splinted implants, and implants installed in various cancellous bone density were designed. Also, the amount of load and material of prostheses were changed. The stress and minimum contact fraction were analyzed on each model using three-dimensional finite element method(I-DEAS and ABAQUS version 5.5). The results of this study were as follows. 1. 10mm long, 3.75mm diameter-screw type implant had $36.5{\sim}43.7%$ of minimum contact fraction. 2. Cylinder type implant showed inferior stress distribution and higher minimum contact fraction than screw type. 3. As implant length was increased, minimum contact fraction was increased a little, however, maximum principal stress was decreased. 4. Implants with a large diameter had lower stress value with slightly higher minimum contact fraction than standard screw type. 5. Two splinted implants showed no change of minimum contact fraction. 6. The higher bone density, the lower stress value. 7. The material of occlusal surface had no effect on the stress of the bone-implant interface.

  • PDF

단일 및 혼합모드하에서 304스테인리스강의 피로균열 진전속도와 방향특성 (Fatigue Crack Growth Rates and Directions in STS304 under Mode I and Mixed Mode)

  • 권종완;양현태
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.102-109
    • /
    • 2002
  • The fatigue crack growth under mixed mode condition has been discussed within the scope of linear fracture mechanics such as maximum tangential stress, maximum tangential principal stress and minimum strain energy density. The purpose of this study is to investigate the characteristics of fatigue test crack growth in 304 stainless steel under mixed node. The fatigue test results carried out by using inclined pre-crack specimens was compared to both of the theoretical predictions of the criteria, maximum tangential stress and stain energy density. As difference from theoretical analysis, the transition region from mixed mode to mode I appeared in the fatigue test. There is deep relationship between the angle of slanted pre-crack and transition. Therefore, as applying the different stress intensity factor to each node I+II and mode I, the directions and rates of fatigue crack growth are evaluated more accurately under mixed mode.