• Title/Summary/Keyword: Minimum Energy Consumption

Search Result 229, Processing Time 0.025 seconds

Minimum Energy Per Bit by Power Model in the Wireless Transceiver System (무선 통신 시스템의 전력 모델을 이용한 비트당 최소 에너지)

  • Choi, Jae-Hoon;Jo, Byung-Gak;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1078-1085
    • /
    • 2011
  • In this paper, we analyze the relationship between energy per bit and the data rate with the variation of the system bandwidth. A existing power model is mathematical model to express power consumption of each device. In this paper, we have to investigate the system level energy model for the RF front-end of a wireless transceiver. Also, the effects of the signal bandwidth, PAR, date rate, modulation level, transmission distance, specific attenuation of frequency band, and the signal center frequency on the RF front-end energy consumption and system capacity are considered. Eventually, we analyze the relationship between energy per bit and the data rate with the variation of the system bandwidth so that we simulate the minimum energy per bit in the several Gbps data rate using Shannon capacity theory.

An Algorithm for Energy Efficient Cooperative Communication in Wireless Sensor Networks

  • Kumar, K. Senthil;Amutha, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3080-3099
    • /
    • 2016
  • In this paper, we propose an algorithm for energy efficient cooperative communication in wireless sensor network (WSN). The algorithm computes the appropriate transmission distance corresponding to optimal broadcast bit error probability, while taking the circuit energy consumption and the number of cooperating nodes into consideration. The algorithm guarantees minimum energy consumption by choosing higher value of bit error probability for cooperative phase and lower value of bit error probability for broadcast phase while maintaining the required end-to-end reliability. The simulation results show that the proposed algorithm provides significant energy saving gain when compared with traditional fixed distance schemes and is suitable for applications demanding energy efficiency with high quality of reception.

Energy-aware Virtual Resource Mapping Algorithm in Wireless Data Center

  • Luo, Juan;Fu, Shan;Wu, Di
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.819-837
    • /
    • 2014
  • Data centers, which implement cloud service, have been faced up with quick growth of energy consumption and low efficiency of energy. 60GHz wireless communication technology, as a new option to data centers, can provide feasible approach to alleviate the problems. Aiming at energy optimization in 60GHz wireless data centers (WDCs), we investigate virtualization technology to assign virtual resources to minimum number of servers, and turn off other servers or adjust them to the state of low power. By comprehensive analysis of wireless data centers, we model virtual network and physical network in WDCs firstly, and propose Virtual Resource Mapping Packing Algorithm (VRMPA) to solve energy management problems. According to VRMPA, we adopt packing algorithm and sort physical resource only once, which improves efficiency of virtual resource allocation. Simulation results show that, under the condition of guaranteeing network load, VPMPA algorithm can achieve better virtual request acceptance rate and higher utilization rate of energy consumption.

Energy-Connectivity Tradeoff through Topology Control in Wireless Ad Hoc Networks

  • Xu, Mengmeng;Yang, Qinghai;Kwak, Kyung Sup
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • In this study, we investigate topology control as a means of obtaining the best possible compromise between the conflicting requirements of reducing energy consumption and improving network connectivity. A topology design algorithm capable of producing network topologies that minimize energy consumption under a minimum-connectivity constraint is presented. To this end, we define a new topology metric, called connectivity efficiency, which is a function of both algebraic connectivity and the transmit power level. Based on this metric, links that require a high transmit power but only contribute to a small fraction of the network connectivity are chosen to be removed. A connectivity-efficiency-based topology control (CETC) algorithm then assigns a transmit power level to each node. The network topology derived by the proposed CETC heuristic algorithm is shown to attain a better tradeoff between energy consumption and network connectivity than existing algorithms. Simulation results demonstrate the efficiency of the CECT algorithm.

EBKCCA: A Novel Energy Balanced k-Coverage Control Algorithm Based on Probability Model in Wireless Sensor Networks

  • Sun, Zeyu;Zhang, Yongsheng;Xing, Xiaofei;Song, Houbing;Wang, Huihui;Cao, Yangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3621-3640
    • /
    • 2016
  • In the process of k-coverage of the target node, there will be a lot of data redundancy forcing the phenomenon of congestion which reduces network communication capability and coverage, and accelerates network energy consumption. Therefore, this paper proposes a novel energy balanced k-coverage control algorithm based on probability model (EBKCCA). The algorithm constructs the coverage network model by using the positional relationship between the nodes. By analyzing the network model, the coverage expected value of nodes and the minimum number of nodes in the monitoring area are given. In terms of energy consumption, this paper gives the proportion of energy conversion functions between working nodes and neighboring nodes. By using the function proportional to schedule low energy nodes, we achieve the energy balance of the whole network and optimizing network resources. The last simulation experiments indicate that this algorithm can not only improve the quality of network coverage, but also completely inhibit the rapid energy consumption of node, and extend the network lifetime.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

Evaluation of Chiller On-Off Control of Partial Ice Storage System for Energy Saving in Cooling Operation (부분축열식 빙축열시스템의 냉방에너지소비 절약을 위한 냉동기 On-Off 제어기법의 평가)

  • 이경호;최병윤;이상렬;한승호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.04a
    • /
    • pp.69-74
    • /
    • 2000
  • This paper describes an operation strategy of ice storage systems for energy saving during building cooling. In this study, chiller is assumed not having function of part load control. Thus, it is needed to adopt on-off control with the objective function of summed energy consumption for minimum energy consumption. A conventional control strategy compared with the chiller-on-off control is chiller-priority control. in this control chiller operates as its full capacity and ice storage meets the rest of the cooling load.

  • PDF

An Analysis of Demand for Environmental Controls on Different Residential Building Types (주거용 건물의 유형에 따른 환경조절요구에 대한 분석)

  • Leigh Seung-Bok;Won Jong-Seo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.960-968
    • /
    • 2004
  • One of the most important functions of a building is to provide thermally comfortable indoor environmental conditions for the occupants. Therefore, a great deal of energy is consumed for heating and cooling to satisfy those thermal requirements. In order to provide thermal comfort with minimum heating and cooling energy consumption, optimal design of building affecting indoor climate is required. This study used the TRNSYS for modeling and simulation of the energy flows of residential building types, and examined the energy efficient measures to reduce the thermal loads. The residential building types are classified into the detached house, apartment house and high-rise residential complex. The results of the simulation show that the heating energy consumption in the detached house is especially high, whereas the cooling load is an important determinant in the apartment house and high-rise residential complex. The measures examined are the insulation thickness, various types of glazing, infiltration, natural and controlled ventilation, solar shading, orientation and etc. Comparative evaluations and sensitivity analyses revealed the effects of these variables and identified their energy efficient building design strategies.

Minimum Energy Cooperative Path Routing in All-Wireless Networks: NP-Completeness and Heuristic Algorithms

  • Li, Fulu;Wu, Kui;Lippman, Andrew
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.204-212
    • /
    • 2008
  • We study the routing problem in all-wireless networks based on cooperative transmissions. We model the minimum-energy cooperative path (MECP) problem and prove that this problem is NP-complete. We hence design an approximation algorithm called cooperative shortest path (CSP) algorithm that uses Dijkstra's algorithm as the basic building block and utilizes cooperative transmissions in the relaxation procedure. Compared with traditional non-cooperative shortest path algorithms, the CSP algorithm can achieve a higher energy saving and better balanced energy consumption among network nodes, especially when the network is in large scale. The nice features lead to a unique, scalable routing scheme that changes the high network density from the curse of congestion to the blessing of cooperative transmissions.

Estimation of Food Cost for Low Income Families Using Food Consumption Data of the 2001 Korean National Health and Nutrition Survey (2001 국민건강.영양조사 자료를 이용한 빈곤층 가구의 식료품비 추정)

  • Noh, Min-Young;Shim, Jae-Eun;Joung, Hyo-Jee;Lee, In-Hee;Ryu, Jeoung-Soon;Paik, Hee-Young
    • Journal of the Korean Home Economics Association
    • /
    • v.44 no.8
    • /
    • pp.79-87
    • /
    • 2006
  • The purpose of this study was to estimate the minimum monthly food cost for the low income population. The food consumption data of 9,311 individuals from the 2001 Korean National Health and Nutrition Survey was used. The monthly food cost was calculated using the Consumer Food Price Database for the year 2001 provided by the Public Health Nutrition Laboratory, Seoul National University. The low income population (n = 1,310) was characterized as older age, lower income, smaller family size, lower education level, and lower energy intake as compared with the total population (n = 8,001). The estimated food cost showed that men in the low income population needed 15% more money for purchasing food to maintain the energy intake level at the average energy intake level of men in the total population. It was also estimated that women in the low income population needed 9% more money for purchasing food to maintain the energy intake level at the average energy intake level of women in the total population. There were differences in monthly food costs depending on the sex and age, and family size. The results of this study could be used as basic information to establish minimum food cost for the low income population in Korea.