• Title/Summary/Keyword: Minimum Dose

Search Result 379, Processing Time 0.03 seconds

Chest-wall Surface Dose During Post-mastectomy Radiation Therapy, with and without Nonmagnetic Bolus: A Phantom Study

  • Choi, Cheon Woong;Hong, Joo Wan;Park, Cheol Soo;Ahn, Jae Ouk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.293-297
    • /
    • 2016
  • For mastectomy patients, sufficient doses of radiation should be delivered to the surface of the chest wall to prevent recurrence. A bolus is used to increase the surface dose on the chest wall, whereby the surface dose is confirmed with the use of a virtual bolus during the computerized treatment-planning process. The purpose of this study is an examination of the difference between the dose of the computerized treatment plan and the dose that is measured on the bolus. Part of the left breast of an Anderson Rando phantom was removed, followed by the attainment of computed tomography (CT) images that were used as the basis for computerized treatment plans that were established with no bolus, a 3 mm-thick bolus, a 5 mm-thick bolus, and a 10 mm-thick bolus. For the computerized treatment plan, a prescribed dose regimen was dispensed daily and planning target volume (PTV) coverage was applied according to the RTOG 1304 guidelines. Using each of the established computerized treatment plans, chest-wall doses of 5 points were measured; this chest-wall dose was used as the standard for the analysis of this study, while the level of significance was set at P < 0.05. The measurement of the chest-wall dose with no bolus is 1.6 % to 10.3 % higher, and the differences of the minimum average and the maximum average of the five measurement points are -13.8 and -1.9, respectively (P < 0.05); however, when the bolus was used, the dosage was measured as 3.7 % to 9.2 % lower, and the differences of the minimum average and the maximum average are 7.4 and 9.0, -1.2 and 17.4, and 8.1 and 19.8 for 3 mm, 5 mm, and 10 mm, respectively (P < 0.05). As the thickness of the bolus is increased, the differences of the average surface dose are further increased. There are a variety of factors that affect the surface dose on the chest wall during post-mastectomy radiation therapy, for which verification is required; in particular, a consideration of the appropriate thickness and the number of uses when a bolus is used, and which has the greatest effect on the surface dose on the chest wall, is considered necessary.

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

Fingernail electron paramagnetic resonance dosimetry protocol for localized hand exposure accident

  • Jae Seok Kim;Byeong Ryong Park;Minsu Cho;Won Il Jang;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.270-277
    • /
    • 2023
  • Exposure to ionizing radiation induces free radicals in human nails. These free radicals generate a radiation-induced signal (RIS) in electron paramagnetic resonance (EPR) spectroscopy. Compared with the RIS of tooth enamel samples, that in human nails is more affected by moisture and heat, but has the advantages of being sensitive to radiation and easy to collect. The fingernail as a biological sample is applicable in retrospective dosimetry in cases of localized hand exposure accidents. In this study, the dosimetric characteristics of fingernails were analyzed in fingernail clippings collected from Korean donors. The dose response, fading of radiation-induced and mechanically induced signals, treatment method for evaluation of background signal, minimum detectable dose, and minimum detectable mass were investigated to propose a fingernail-EPR dosimetry protocol. In addition, to validate the practicality of the protocol, blind and field experiments were performed in the laboratory and a non-destructive testing facility. The relative biases in the dose assessment result of the blind and field experiments were 8.43% and 21.68% on average between the reference and reconstructed doses. The results of this study suggest that fingernail-EPR dosimetry can be a useful method for the application of retrospective dosimetry in cases of radiological accidents.

Candida Vaccine Development and Protective Antibodies: Proposed Minimum Criteria for Antibody Protection Against Fungal Disease

  • Han, Yong-Moon
    • Proceedings of the PSK Conference
    • /
    • 2002.04a
    • /
    • pp.83-84
    • /
    • 2002
  • The third criterion should seem obvious, but the situation with experimental candidiasis may be more complex than merely a consideration of the minimum titer required for protection. In a preliminary study designed to obtain a dose-response curve relating the amount of MAb B6.1, we found that mice given very high amount of the antibody were less resistant against disseminated candidiasis than animals given less antibody.

  • PDF

Radiosterilization of Medical Products (전리방사선을 이용한 의료제품 멸균연구)

  • 민봉희;천기정;이강순
    • Korean Journal of Microbiology
    • /
    • v.11 no.4
    • /
    • pp.181-188
    • /
    • 1973
  • For the bulk sterilization, there are two traditional methods of autoclaving and exposure to ethylene oxide. However, autoclaving involves high temperatures and pressures and ethylene oxide is chemically highly reactive, so these methods are radiation, we have carried out sterility and safety tests on some medical products irradiated at varying radiation levels. The results obtained were as follows ; 1) The minimum dose of radiation for the sterilization of medical products was 2.5 Mrad. 2) The radiosterilization dose varied depending on the initial population of microorganisms. 3) In transfusion sets, a level of radiation of 2.5Mrad at room temperature produced no pyrogen and they remained bacteriologically sterile.

  • PDF

A proposal on multi-agent static path planning strategy for minimizing radiation dose

  • Minjae Lee;SeungSoo Jang;Woosung Cho;Janghee Lee;CheolWoo Lee;Song Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.92-99
    • /
    • 2024
  • To minimize the cumulative radiation dose, various path-finding approaches for single agent have been proposed. However, for emergence situations such as nuclear power plant accident, these methods cannot be effectively utilized for evacuating a large number of workers because no multi-agent method is valid to conduct the mission. In this study, a novel algorithm for solving the multi-agent path-finding problem is proposed using the conflict-based search approach and the objective function redefined in terms of the cumulative radiation dose. The proposed method can find multi paths that all agents arrive at the destinations with reducing the overall radiation dose. To verify the proposed method, three problems were defined. In the single-agent problem, the objective function proposed in this study reduces the cumulative dose by 82% compared with that of the shortest distance algorithm in experiment environment of this study. It was also verified in the two multi-agent problems that multi paths with minimized the overall radiation dose, in which all agents can reach the destination without collision, can be found. The method proposed in this study will contribute to establishing evacuation plans for improving the safety of workers in radiation-related facilities.

Research for Lateral Penumbra and Dose Distribution When Air Gap Changing in Proton Therapy Case (양성자치료시 Air Gap 변화에 따른 Lateral Penumbra와 선량분포 변화에 대한 비교 및 연구)

  • Kim, Jae-Won;Sim, Jin-Seob;Jang, Yo-Jong;Kang, Dong-Yun;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • Purpose: In the treatment of high-energy protons Air gap (the distance between the patient and the exit Beam) Lateral Penumbra of the changes to the increase in the radiation fields can form unnecessary and Increase the maximum dose at the site of treatment and reduced the minimum dose homogeneity of dose distributions can decline. Air gap due to this change in dose distribution compared to investigate studied. Materials and Methods: Received proton therapy at our institution Lung, Liver patients were selected and the size of six other Air gap in Field A and Field B 2, 4, 6, 8, 10 cm Proton external beam planning system by setting up a treatment plan established. Air gap according to the Lateral Penumbra area and DVH (Dose Volume Histogram) to compare the maximum dose and minimum dose of PCTV areas were compared. In addition, the dose homogeneity within PCTV Homogeneity index to know the value and compared. Results: Air gap (2, 4, 6, 8, 10 cm) at each change in field size were analyzed according to the Lateral Penumbra region Field A Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 28.7% and Field B Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 31.6%. The result of DVH analysis for relative dose of the maximum dose According to Air gap 2~10 cm is the mean average of 110.3% from 108.1% to a sustained increased by approximately 2.03% and The average relative dose of minimum dose is the mean average of 93.9% percent to 90.8 percent from the continuous decrease of about 3.31 percent. The result of Homogeneity index value to the according to Air gap 2~10 cm is the 2-fold increase from 1.09 to 2.6. Conclusion: In proton therapy case, we can see the increasing of lateral penumbra area when airgap getting increase. And increasing of Dmax and decreasing Dmin in the field are making increase homogeneity index, So we can realize there are not so good homogeneity in the PCTV. Therefore we should try to minimize air gap in proton therapy case.

  • PDF

APPLICATION OF WHOLE BODY COUNTER TO NEUTRON DOSE ASSESSMENT IN CRITICALITY ACCIDENTS

  • Kurihara, O.;Tsujimura, N.;Takasaki, K.;Momose, T.;Maruo, Y.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.249-253
    • /
    • 2001
  • Neutron dose assessment in criticality accidents using Whole Body Counter (WBC) was proved to be an effective method as rapid neutron dose estimation at the JCO criticality accident in Tokai-mura. The 1.36MeV gamma-ray of $^{24}Na$ in a body can be detected easily by a germanium detector. The Minimum Detectable Activity (MDA) of $^{24}Na$ is approximately 50Bq for 10miniute measurement by the germanium-type whole body counter at JNC Tokai Works. Neutron energy spectra at the typical shielding conditions in criticality accidents were calculated and the conversion factor, whole body activity-to-organ mass weighted neutron absorbed dose, corresponding to each condition were determined. The conversion factor for uncollied fission spectrum is 7.7 $[(Bq^{24}Na/g^{23}Na)/mGy]$.

  • PDF

Brachytherapy for Head and Neck Cancer (두경부암의 근접방사선 치료)

  • Yoo Seong-Yul
    • Korean Journal of Head & Neck Oncology
    • /
    • v.7 no.1
    • /
    • pp.3-9
    • /
    • 1991
  • Brachytherapy is a method of radiotherapy in advantage to achieve better local control with minimum radiation toxicity in comparison with external irradiation because radiation dose is distributed according to the inverse square low of gamma-ray emitted from the implanted sources. The main characteristics of brachytherapy are delivering of higher dose to target volume shortening of total treatment period and sparing of normal tissue. Recent development of iridium ribbons for low dose rate implant provides improvement of technology of brachytherapy in terms of safety and efficiency. High dose rate method. on the other hand, is effective to avoid unnecessary expoure of medical personnel.

  • PDF

Prediction for the Lifetime Effective Dose and Radon Exposure Risk by using Dose Conversion Convention: Base on the Indoor Radon Concentration of Lecture Room in a University (선량 환산 관례를 이용한 생애유효선량 및 라돈피폭 위험도 예측: 대학 강의실 라돈농도 중심으로)

  • Lee, Jae-Seung;Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.243-249
    • /
    • 2018
  • The indoor radon concentration was measured in the lecture room of the university and the radon concentration was converted to the amount related to the radon exposure using the dose conversion convention and compared with the reference levels for the radon concentration control. The effect of indoor radon inhalation was evaluated by estimating the life effective dose and the risk of exposure. To measure the radon concentration, measurements were made with a radon meter and a dedicated analysis Capture Ver. 5.5 program in a university lecture room from January to February 2018. The radon concentration measurement was carried out for 5 consecutive hours for 24 hours after keeping the airtight condition for 12 hours before the measurement. Radon exposure risk was calculated using the radon dose and dose conversion factor. Indoor radon concentration, radon exposure risk, and annual effective dose were found within the 95% confidence interval as the minimum and maximum boundary ranges. The radon concentration in the lecture room was $43.1-79.1Bq/m^3$, and the maximum boundary range within the 95% confidence interval was $77.7Bq/m^3$. The annual effective dose was estimated to be 0.20-0.36 mSv/y (mean 0.28 mSv/y). The life-time effective dose was estimated to be 0.66-1.18 mSv (mean $0.93{\pm}0.08mSv$). Life effective doses were estimated to be 0.88-0.99 mSv and radon exposure risk was estimated to be 12.4 out of 10.9 per 100,000. Radon concentration was measured, dose effective dose was evaluated using dose conversion convention, and degree of health hazard by indoor radon exposure was evaluated by predicting radon exposure risk using nominal hazard coefficient. It was concluded that indoor living environment could be applied to other specific exposure situations.